https://www.sciencedirect.com/science/article/pii/S1097276515004499
ERAD, Endoplasmiseen retikuluumiin assosioitunut proteiininhajoitustyö
Artikkelissa asnnetaan esimerkkejä proteiinien ja toksiinien tavasta hyödyntää ERAD- järjestelmää. samlal tutkijat kuvaavat imettäväisissä ilmenevän ERAD järjestelmän ja sen palstiset ja mahdolliset mekaaniset joustavuudet, mikä auttaa ymmärtämään paremmin ERAD-fysioliogiaa ja patologiaa.
Proteiinin laadunkontrollijärjestelmän (ERQC) kolme akselia endoplasmisessa retikulumissa
ERQC
Secreted or membrane proteins are first synthesized at the ER and are subsequently transported along the secretory pathway. Protein synthesis
at the ER is highly active and accounts for more than one-third of
total protein synthesis in the cell, whereas the ER presumably occupies
only one-tenth of the total cell volume, indicating that the ER is
extremely crowded with newly synthesized proteins. Nascent and unfolded
proteins are unstable because their hydrophobic moieties are yet to be
embedded in the inner surface of the target structure and tend to be
entangled with each other via non-specific hydrophobic interactions.
Even after protein folding is completed, matured proteins are
continuously exposed to cellular stresses, including heat stress and ER stress,
and are often denatured within the cell, resulting in the exposure of
hydrophobic moieties to molecular surfaces. This further leads to polypeptide aggregation and cytotoxicity (Hartl and Hayer-Hartl, 2002). ERQC is a comprehensive maintenance system for the highly crowded proteins in the ER and consists of three axes.
Kolme ER-akselia proteiinin laadunkontrollissa (ERQC)
I. Ensimmäinen akseli koskee proteiinien laskostumista (folding) ja siinä mainitaan kaitsijaproteiinien (chaperone) ja entsyymien kolme ryhmäa . 1) B1P, joka edistää proteiinin laskostumista, 2) ER- oksidoreduktasit: PDI, proteiinidisulfidi-isomeraasi, ERO1, ER oxidoreduktaasi ja ERp57, joka oksidoi cysteiiniä ja oikaisee disulfidisillat paralleeleiksi tuoreissa proteiineissa ja 3) lektiinin kaltaiset kaitsijaproteiinit calnexiini (CNX ja calretikuliini.
II. Toinen kvaliteettikontrollin akseli on laskostumattomien (unfolded) tai viallisesti laskostuneiden (missfolded) proteiinien vaste (UPR) . Kun laskostuamttomien proteiinien taso endoplasmisessa verkostossa (ER) ylittää laskostuskapasiteetin , alkaa (stressinä ) kertyä endoplasmiseen retikulumiin kuormaa ja ER turpoa a- kolme eri proteiinia ER kalvossa tunnistaa tilanteen IRE1, PERK ja ATF6 ja niistä triggeröityy alavirran tapahtumia, ja samalla translaatiota vähennetään ja laskostavia proteiinejä teetetään lisää ja myös hajoittavia tekijöitä, ERAD -koneiston jäseniä, aletaan tuottaa.
III. akseli on varsinainen ERAD-koneiston funktio, josta erikseen-.
Three Axes of ERQC
The first axis of ERQC is protein folding (Araki and Nagata, 2011). Most newly synthesized proteins in the ER are covalently modified with intra- and/or inter-molecular disulfide bonds and oligosaccharide
chains in parallel with their synthesis and folding. These
modifications reinforce the structure of these proteins such that they
can survive in the extracellular environment. Three groups of molecular chaperones
and folding enzymes majorly contribute to modification-coupled protein
folding. The first group includes classic molecular chaperones, such as immunoglobulin heavy chain-binding protein (BiP), which belongs to the heat shock protein 70 family and promotes protein folding with an intrinsic ATP-hydrolyzing activity (Otero et al., 2010). The second group consists of ER oxidoreductases, such as protein disulfide isomerase (PDI), ER oxidoreductin 1 (ERO1), and ERp57, which oxidize substrate cysteine
residues (synonymous with the formation of a disulfide bond) and
isomerize improperly oriented disulfide bonds in parallel with de novo
protein synthesis and folding (Ellgaard and Ruddock, 2005). The third group consists of lectin-like chaperones such as calnexin and calreticulin, which recognize oligosaccharide chains attached to newly synthesized glycoproteins and promote protein folding (Helenius and Aebi, 2004). Some of these factors also participate in ERAD and are occasionally utilized by pathogens, as discussed later.
The second axis of ERQC is the unfolded protein response
(UPR). When the level of unfolded or misfolded proteins accumulated in
the ER exceeds the folding and clearance capacity of the ER for any
reason, particular ER membrane proteins such as PERK, ATF6,
and IRE1 sense the overloaded state and initiate downstream events,
including translation attenuation and upregulation of folding enzymes
and ERAD factors, which comprehensively reduce the protein burden in the
ER and restore ER proteostasis (see previous review articles, e.g., Walter and Ron, 2011). The UPR also involves an apoptotic pathway, which is activated when the cell fails to resolve the stress conditions (Walter and Ron, 2011).
Finally, the third axis of ERQC is ERAD, which is described in the next section.
Inga kommentarer:
Skicka en kommentar