Leta i den här bloggen


fredag 17 november 2017

Onkologiseen terapiaan uutta strategiaa mikroRNA.sta.

http://www.tekniikkatalous.fi/tiede/tutkimus/suomalaistutkimus-tama-molekyyli-lisaa-syovan-laakehoidon-tehoa-6687716
Tekniikka ja talouslehti kuvaa uutta onkologian alan väitöskirjaa.

FM Sofia Aakko tunnisti Turun yliopistossa tarkastettavassa väitöskirjassaan mikroRNA-molekyylejä, jotka säätelevät solujen jakautumista ja ennustavat kasvainten herkkyyttä taksaani-lääkeaineille. Tämän havainnon avulla voitaisiin tulevaisuudessa valita oikea syövän lääkehoito.

Aakko havaitsi kahden tunnistetun mikroRNA-molekyylin,
 miR-493-3p
 let-7b-5p:n,
 tasojen muuttuneen merkittävästi aggressiivisissa rinta- ja munasarjasyöpäkasvaimissa normaaleihin kudoksiin verrattuna.


 Aakon tutkimuksen tulokset osoittavat tiettyjen mikroRNA-molekyylien osallistuvan syöpäsolujen jakautumisen säätelyyn.

 Taksaani-lääkeaine tappaa syöpäsoluja estämällä niiden normaalin jakautumisen. Väitöstutkimuksessa tunnistetun mikroRNA-molekyylin,
  miR-203b-3p
 havaittiin lisäävän syöpäsolujen kuolemaa taksaanihoidon yhteydessä vaikuttamalla solukuolemaa estävän proteiinin ilmentymiseen syöpäsoluissa.
Aakko myös havaitsi kyseisen mikroRNA:n määrän olevan korkea niiden rinta- ja munasarjasyöpäpotilaiden kasvaimissa, joiden hoitovaste oli hyvä.

onsdag 8 november 2017

Geenitekniikka ja epidermolysis bullosa. Toimiva ihosiirrännäinen luotu.

https://www.hs.fi/tiede/art-2000005441685.html

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4252672/bin/ad-26-739-g004.jpg

Search results

Items: 1 to 20 of 1475

1.
Reimer A, Schwieger-Briel A, He Y, Leppert J, Schauer F, Kiritsi D, Schneider H, Ott H, Bruckner-Tuderman L, Has C.
Br J Dermatol. 2017 Oct 27. doi: 10.1111/bjd.16088. [Epub ahead of print]
Junctional epidermolysis bullosa (JEB) comprises rare autosomal recessive disorders with a broad spectrum of clinical features and severity. The genetic basis involves mutations in genes encoding proteins of the dermal-epidermal junction, primarily laminin 332. This heterotrimeric glycoprotein consists of laminin α3, β3 and γ2 chains, and the majority of mutations in the respective genes (LAMA3, LAMB3, and LAMC2) lead to premature termination codons resulting in severe generalized JEB (previously Herlitz)1 . This article is protected by copyright. All rights reserved
2.
Natsuga K, Nishie W, Nishimura M, Shinkuma S, Watanabe M, Izumi K, Nakamura H, Hirako Y, Shimizu H.
Hum Mutat. 2017 Dec;38(12):1666-1670. doi: 10.1002/humu.23344. Epub 2017 Oct 6.
Plectin is a linker protein that interacts with intermediate filaments and β4 integrin in hemidesmosomes of the epidermal basement membrane zone (BMZ). Type XVII collagen (COL17) has been suggested as another candidate plectin binding partner in hemidesmosomes. 
Here, we demonstrate that plectin-COL17 binding helps to maintain epidermal BMZ organization. We identified an epidermolysis bullosa (EB) simplex patient as having markedly diminished expression of plectin and COL17 in skin. The patient is compound heterozygous for sequence variants in the plectin gene (PLEC); one is a truncation and the other is a small in-frame deletion sequence variant. The in-frame deletion is located in the putative COL17-binding domain of plectin and abolishes the plectin-COL17 interaction in vitro. These results imply that disrupted interaction between plectin and COL17 is involved in the development of EB. Our study suggests that protein-protein binding defects may underlie EB in patients with unidentified disease-causing sequence variants.
3.
Kunz N, Hauenschild E, Maass S, Kalies KU, Klinger M, Barra M, Hecht L, Helbig F, Soellner S, Caldwell CC, Ludwig RJ, Westermann J, Kalies K.
Exp Dermatol. 2017 Sep 23. doi: 10.1111/exd.13450. [Epub ahead of print]
Previous reports have demonstrated that cell-derived nanoparticles (CDNPs) composed of bovine or porcine protein complexes exerted therapeutic effects against viral infections and cancer in mice and humans. Based on these observations, we asked whether CDNPs would improve inflammatory skin disorders. To address this, we utilized two distinct mouse models of cutaneous inflammation: the autoimmune skin-blistering disease epidermolysis bullosa acquisita (EBA) as an example of an autoantibody-induced cutaneous inflammation, and Leishmania major (L. major) infection as an example of a pathogen-induced cutaneous inflammation. In both models, we observed that CDNPs increased mRNA expression of the Th2 cytokine IL-4. Clinically, CDNPs decreased inflammation due to EBA and increased L. major-specific IgG1 levels without major effects on infected skin lesions. In addition, CDNPs supported the growth of keratinocytes in human skin cultures. In vitro studies revealed that CDNPs were taken up predominantly by macrophages, leading to a shift towards the expression of anti-inflammatory cytokine genes. Altogether, our data demonstrate that treatment with porcine CDNPs may be a new therapeutic option for the control of autoimmune-mediated inflammatory skin disorders.
4.
Webber BR, O'Connor KT, McElmurry RT, Durgin EN, Eide CR, Lees CJ, Riddle MJ, Mathews WE, Frank NY, Kluth MA, Ganss C, Moriarity BS, Frank MH, Osborn MJ, Tolar J.
Lab Invest. 2017 Oct;97(10):1218-1224. doi: 10.1038/labinvest.2017.85. Epub 2017 Sep 11.
Recessive dystrophic epidermolysis bullosa (RDEB) is a debilitating and ultimately lethal blistering disease caused by mutations to the Col7a1 gene. Development of novel cell therapies for the treatment of RDEB would be fostered by having immunodeficient mouse models able to accept human cell grafts; however, immunodeficient models of many genodermatoses such as RDEB are lacking. To overcome this limitation, we combined the clustered regularly interspaced short palindromic repeats and associated nuclease (CRISPR/Cas9) system with microinjection into NOD/SCID IL2rγcnull (NSG) embryos to rapidly develop an immunodeficient Col7a1-/- mouse model of RDEB. Through dose optimization, we achieve F0 biallelic knockout efficiencies exceeding 80%, allowing us to quickly generate large numbers of RDEB NSG mice for experimental use. Using this strategy, we clearly demonstrate important strain-specific differences in RDEB pathology that could underlie discordant results observed between independent studies and establish the utility of this system in proof-of-concept human cellular transplantation experiments. Importantly, we uncover the ability of a recently identified skin resident immunomodulatory dermal mesenchymal stem cell marked by ABCB5 to reduce RDEB pathology and markedly extend the lifespan of RDEB NSG mice via reduced skin infiltration of inflammatory myeloid derivatives.
5.
Kocher T, Peking P, Klausegger A, Murauer EM, Hofbauer JP, Wally V, Lettner T, Hainzl S, Ablinger M, Bauer JW, Reichelt J, Koller U.
Mol Ther. 2017 Nov 1;25(11):2585-2598. doi: 10.1016/j.ymthe.2017.08.015. Epub 2017 Aug 24.
6.
Goletz S, Zillikens D, Schmidt E.
Exp Dermatol. 2017 Sep 8. doi: 10.1111/exd.13446. [Epub ahead of print] Review.
PMID:
28887824
7.
Pfendner EG, Lucky AW.
In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mefford HC, Stephens K, Amemiya A, Ledbetter N, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2017.
2008 Feb 22 [updated 2017 Sep 7].
8.
Leoni G, Lyness A, Ginty P, Schutte R, Pillai G, Sharma G, Kemp P, Mount N, Sharpe M.
Drug Deliv Transl Res. 2017 Aug 15. doi: 10.1007/s13346-017-0418-z. [Epub ahead of print]
9.
Meng L, Du J, Li W, Lu G, Tan Y.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2017 Aug 10;34(4):504-508. doi: 10.3760/cma.j.issn.1003-9406.2017.04.008. Chinese.
PMID:
28777847
10.
Cappuccio G, Pinelli M, Torella A, Alagia M, Auricchio R, Staiano A, Nigro V; TUDP, Brunetti-Pierri N.
Am J Med Genet A. 2017 Oct;173(10):2743-2746. doi: 10.1002/ajmg.a.38367. Epub 2017 Aug 2.
PMID:
28767192
11.
Aushev M, Koller U, Mussolino C, Cathomen T, Reichelt J.
Mol Ther Methods Clin Dev. 2017 Jul 5;6:112-123. doi: 10.1016/j.omtm.2017.06.008. eCollection 2017 Sep 15.
12.
Alexeev V, Salas-Alanis JC, Palisson F, Mukhtarzada L, Fortuna G, Uitto J, South A, Igoucheva O.
J Invest Dermatol. 2017 Nov;137(11):2298-2308. doi: 10.1016/j.jid.2017.07.002. Epub 2017 Jul 20.
PMID:
28736230
13.
Woodley DT, Cogan J, Hou Y, Lyu C, Marinkovich MP, Keene D, Chen M.
J Clin Invest. 2017 Aug 1;127(8):3028-3038. doi: 10.1172/JCI92707. Epub 2017 Jul 10.
14.
Tabor A, Pergolizzi JV Jr, Marti G, Harmon J, Cohen B, Lequang JA.
J Clin Aesthet Dermatol. 2017 May;10(5):36-48. Epub 2017 May 1. Review.
15.
Zupancic T, Sersa G, Törmä H, Lane EB, Herrmann H, Komel R, Liovic M.
Arch Dermatol Res. 2017 Jun 24. doi: 10.1007/s00403-017-1757-9. [Epub ahead of print]
PMID:
28647894
16.
Ali A, Hu L, Zhao F, Qiu W, Wang P, Ma X, Zhang Y, Chen L, Qian A.
Semin Cell Dev Biol. 2017 Sep;69:34-39. doi: 10.1016/j.semcdb.2017.06.005. Epub 2017 Jun 13. Review.
PMID:
28627382
17.
Małecki M, Domański M, Ciechanowski K.
BMC Nephrol. 2017 Jun 14;18(1):193. doi: 10.1186/s12882-017-0606-6.
18.
Kim EN, Harris AG, Bingham LJ, Yan W, Su JC, Murrell DF.
Acta Derm Venereol. 2017 Oct 2;97(9):1114-1119. doi: 10.2340/00015555-2715.
19.
Condorelli AG, Fortugno P, Cianfarani F, Proto V, Di Zenzo G, Didona B, Zambruno G, Castiglia D.
Br J Dermatol. 2017 May 31. doi: 10.1111/bjd.15690. [Epub ahead of print]
PMID:
28561256
20.
Atanasova VS, Jiang Q, Prisco M, Gruber C, Piñón Hofbauer J, Chen M, Has C, Bruckner-Tuderman L, McGrath JA, Uitto J, South AP.
J Invest Dermatol. 2017 Sep;137(9):1842-1849. doi: 10.1016/j.jid.2017.05.011. Epub 2017 May 24. Review.
PMID:
28549954