( Koska Sars-2 virus käyttää autofagiatien alkuosaa tehdäkseen replikaatio-organellin, katson tätä histokompatibiliteettialueen molekyylikatrasta. )
Leta i den här bloggen

måndag 8 augusti 2022
Virusten käyttämä autofagiatie, esimerkkeinä EBV, VZV, poliovirus, coxackievirus
Sinkkiproteiinien ZXDA ja ZXDC osuutta histokompatibiliteettigeenisäätelyssä
ZNF896,
(Xp11.21), ZXDA,'
Geeni koodaa toista kahdesta kaksinkertaistuneesta sinkkisormigeenistä: Tämä X-kromosomin geeni (Xp11) on telomeerinen kopio ja se, joka on sentromeerismpänä sijaitseva. Ne kaksi geeniä omaavat 98%:sen nukleotidisekvenssien samankaltaisuuden ja oletetut proteiinit sisältävät 10 peräkkäistä sinkkisormimotiivia. Tähän geeniin ZXDA liittyy monokromaattinen sinivärisokeus. Tärkeä paralogi on se toinen geeni ZXDB ( ZNF905, X11.21).
Lisänä tästä geenistä ZNF896 tärkeää tietoa: Sillä on vaikutusta immunologiseen rakenteeseen: Se edistää MHC I ja MHC II luokkien geenitranskriptiota. Proteiinikoko 799 aminohappoa.
ZNF896 (GeneCards tietoa)
Aliases for ZXDA Gene , Zinc
Finger X-Linked Duplicated A 2
3
5 , Zinc Finger X-Linked Protein ZXDA 3
4
, Zinc Finger Protein 896 2
3 , ZNF896 3
GeneCards Summary for ZXDA Gene
ZXDA (Zinc Finger X-Linked Duplicated A) is a Protein Coding gene.
Diseases associated with ZXDA include Blue
Cone Monochromacy. Gene Ontology (GO) annotations related to this
gene include nucleic acid binding and C2H2 zinc finger
domain binding. An important paralog of this gene is
ZXDB
(= ZNF905, Xp11.21).
Protein attributes for ZXDA Gene: Size:799 amino acids. Molecular mass: 84771 Da
(UniProtKB/Swiss-Prot Summary for CIITA Gene
Tästä on tietoa on sen oman otsikon alla enemmän:
-
Essential for transcriptional activity of the HLA class II promoter; activation is via the proximal promoter. No DNA binding of in vitro translated CIITA was detected. May act in a coactivator-like fashion through protein-protein interactions by contacting factors binding to the proximal MHC class II promoter, to elements of the transcription machinery, or both. Alternatively it may activate HLA class II transcription by modifying proteins that bind to the MHC class II promoter. Also mediates enhanced MHC class I transcription; the promoter element requirements for CIITA-mediated transcription are distinct from those of constitutive MHC class I transcription, and CIITA can functionally replace TAF1 at these genes. Activates CD74 transcription (PubMed:32855215). Exhibits intrinsic GTP-stimulated acetyltransferase activity. Exhibits serine/threonine protein kinase activity: can phosphorylate the TFIID component TAF7, the RAP74 subunit of the general transcription factor TFIIF, histone H2B at 'Ser-37' and other histones (in vitro). Has antiviral activity against Ebola virus and coronaviruses, including SARS-CoV-2. Induces resistance by up-regulation of the p41 isoform of CD74, which blocks cathepsin-mediated cleavage of viral glycoproteins, thereby preventing viral fusion (PubMed:32855215).
MHC luokka I- ja MHCluokka II- geenien ja proteiinien säätelystä
NLRC5 exclusively transactivates MHC class I and related genes through a distinctive SXY module.
Ludigs K, Seguín-Estévez Q, Lemeille S, Ferrero I, Rota G, Chelbi S, Mattmann C, MacDonald HR, Reith W, Guarda G. PLoS Genet. 2015 Mar 26;11(3):e1005088. doi: 10.1371/journal.pgen.1005088. eCollection 2015 Mar. PMID: 25811463 Free PMC article.
MHC class II (MHCII) genes are transactivated by the NOD-like receptor (NLR) family member CIITA, which is recruited to SXY enhancers of MHCII promoters via a DNA-binding "enhanceosome" complex. NLRC5, another NLR protein, was recently found to cont …
control transcription of MHC class I (MHCI) genes. However, detailed understanding of NLRC5's target gene specificity and mechanism of action remained lacking. We performed ChIP-sequencing experiments to gain comprehensive information on NLRC5-regulated genes. In addition to classical MHCI genes, we exclusively identified novel targets encoding non-classical MHCI molecules having important functions in immunity and tolerance. ChIP-sequencing performed with Rfx5(-/-) cells, which lack the pivotal enhanceosome factor RFX5, demonstrated its strict requirement for NLRC5 recruitment. Accordingly, Rfx5-knockout mice phenocopy Nlrc5 deficiency with respect to defective MHCI expression. Analysis of B cell lines lacking RFX5, RFXAP, or RFXANK further corroborated the importance of the enhanceosome for MHCI expression. Although recruited by common DNA-binding factors, CIITA and NLRC5 exhibit non-redundant functions, shown here using double-deficient Nlrc5(-/-)CIIta(-/-) mice. These paradoxical findings were resolved by using a "de novo" motif-discovery approach showing that the SXY consensus sequence occupied by NLRC5 in vivo diverges significantly from that occupied by CIITA. These sequence differences were sufficient to determine preferential occupation and transactivation by NLRC5 or CIITA, respectively, and the S box was found to be the essential feature conferring NLRC5 specificity. These results broaden our knowledge on the transcriptional activities of NLRC5 and CIITA, revealing their dependence on shared enhanceosome factors but their recruitment to distinct enhancer motifs in vivo. Furthermore, we demonstrated selectivity of NLRC5 for genes encoding MHCI or related proteins, rendering it an attractive target for therapeutic intervention. NLRC5 and CIITA thus emerge as paradigms for a novel class of transcriptional regulators dedicated for transactivating extremely few, phylogenetically related genes.
söndag 7 augusti 2022
Histokompatibiliteetti " Master Control factor" CIITA Immuunivasteen tärkeää geenivarustetta.
Immuunivasteelle tärkeää genomivarustetta:
GeneCards: https://www.genecards.org/cgi-bin/carddisp.pl?gene=CIITA&keywords=CIITA
Aliases for CIITA Gene
External Ids for CIITA Gene
MHC class II transactivator CIITA induces cell resistance to Ebola virus and SARS-like coronaviruses
- PMID: 32855215
- PMCID: PMC7665841
- DOI: 10.1126/science.abb3753
UniProtKB/Swiss-Prot Summary for CIITA Gene
-
Essential for transcriptional activity of the HLA class II promoter; activation is via the proximal promoter. No DNA binding of in vitro translated CIITA was detected. May act in a coactivator-like fashion through protein-protein interactions by contacting factors binding to the proximal MHC class II promoter, to elements of the transcription machinery, or both. Alternatively it may activate HLA class II transcription by modifying proteins that bind to the MHC class II promoter. Also mediates enhanced MHC class I transcription; the promoter element requirements for CIITA-mediated transcription are distinct from those of constitutive MHC class I transcription, and CIITA can functionally replace TAF1 at these genes. Activates CD74 transcription (PubMed:32855215). Exhibits intrinsic GTP-stimulated acetyltransferase activity. Exhibits serine/threonine protein kinase activity: can phosphorylate the TFIID component TAF7, the RAP74 subunit of the general transcription factor TFIIF, histone H2B at 'Ser-37' and other histones (in vitro). Has antiviral activity against Ebola virus and coronaviruses, including SARS-CoV-2. Induces resistance by up-regulation of the p41 isoform of CD74, which blocks cathepsin-mediated cleavage of viral glycoproteins, thereby preventing viral fusion (PubMed:32855215).
Solutuman sinkki (Zn) ja geeni (2001). Sinkkisormiproteiinit ZNF(2017)
Dreosti I.1. Zinc and gene (2001)
Suom Sinkistä ja geenistä.
2001 Apr 18;475(1-2):161-7.
doi: 10.1016/s0027-5107(01)00067-7. Zinc and the gene I E Dreosti 1Affiliations PMID: 11295161 DOI: 10.1016/s0027-5107(01)00067-7
TIIVISTELMÄN suomennosta:
Merkitsevä osa soluperäisestä sinkistä (Zn) on solutuman (nucleus) puolella ja siellä se näyttää olevan kriittinen geneettisen vakauden ylläpidossa ja geeniekspressioprosessissa. Geenien ilmentämisessä sinkki (Zn) toimii mekanistisesti useissa tasoissa, joista nykyään kiinnostaa erityisesti sinkin osuus DNA:n transkriptiossa. Siinä toimii useita transkriptiofaktoreita (TF), joista osalla on DNA:ta sitovia erityisiä sinkkisormialueita rakenteessaan ja ne pystyvät kontrolloimaan solunproliferoitumsita, erilaistumista ja solukuolemaa. Huomattavaa mielenkiintoa on kohdistunut sinkkiin essentiellinä mineraalina juuri siksi, kun se on keskeisen tärkeä solun jakautumiselle ja kasvulle. On paljon kirjallisuutta sinkin (Zn) ravintolähteistä ja sinkkimineraalin ravintoperäisen saannin suosituksista.Abstract:A significant portion of cellular zinc is found in the nucleus where it appears to be critically involved in maintaining genetic stability and in the process of gene expression. With regard to gene expression zinc functions mechanistically at several levels but recent interest has focussed especially on the involvement of zinc in DNA transcription through the activity of transcription factors (Tfs) which contain specific zinc-finger regions (Znf) which bind to DNA and, in conjunction with other families of transcription factors (Tfs) , control cell proliferation, differentiation and cell death. Because of the central importance of zinc in cell division and growth, considerable attention is paid to zinc as an essential trace element and much has been written concerning dietary sources of zinc and recommended dietary intakes of the metal.
Kommenttini: Sinkkisormiproteiineista on kirjoittanut M.Cassandri artikkelin 2017 : Hän kokosi artiikeliinsa 30 ryhmää. Tässä blogissa kirjoitin niistä toukokuussa 2018 Toistan otsikkoni: Zinc Finger proteins (ZNF). M.Cassandri et al (2017) .
eCollection 2017. Zinc-finger proteins in health and disease
- PMID: 29152378
- PMCID: PMC5683310
- DOI: 10.1038/cddiscovery.2017.71
Zinc-finger proteins (ZNFs) are one of the most abundant groups of proteins and have a wide range of molecular functions. Given the wide variety of zinc-finger domains, ZNFs are able to interact with DNA, RNA, PAR (poly-ADP-ribose) and other proteins. Thus, ZNFs are involved in the regulation of several cellular processes. In fact, ZNFs are implicated in transcriptional regulation, ubiquitin-mediated protein degradation, signal transduction, actin targeting, DNA repair, cell migration, and numerous other processes. The aim of this review is to provide a comprehensive summary of the current state of knowledge of this class of proteins. Firstly, we describe the actual classification of ZNFs, their structure and functions. Secondly, we focus on the biological role of ZNFs in the development of organisms under normal physiological and pathological conditions.
Suomennan 7.8. 2022 PubMed tekstin:
Sinkkisormiproteiinit (ZNFs) ovat yksi kaikkein runsaimmista proteiiniryhmistä ja niillä on laaja kirjo erilaisia funktioita. Ottaen huomioon sinkkisormidomeenin (znf domain) suuren vaihtelevaisuuden sinkkisormiproteiineilla on kykyä tehdä interaktioita DNA-, RNA- ja PAR-proteiineihin ja muihin proteiineihin. (PAR tarkoittaa polyadenosyyliriboosia). Tällä tavalla sinkkisormiproteiinit (ZNF) osallistuvat useiden soluproteiiniprosessien säätelyyn. Todellakin niitä on osoitettavissa transkription säädössä, ubikitiinivälitteisessä proteosomaalisessa silppuroinnissa, signaalien välityksessä, aktiiniin kohdistamisessa, DNA:n korjauksessa, solumigraatiossa ja lukuisissa muissa prosessesssa. Tämän katsauksen tarkoituksena on tarjota laaja yhteenveto tästä proteiiniluokasta saadusta nykytietämyksestä. Ensinnä tässä selostetaan sinkkisormien (ZNF) ajanmukainen luokitus , niiden rakenne ja funktio. Toiseksi kohdistetaan sinkkisormiproteiinien biologiseen osuuteen organismien kehityksessä normaaliolosuhteissa ja patologisissa tiloissa.