Leta i den här bloggen


onsdag 29 maj 2019

THAP11 (16q22.1) Cobalamiinin aineenvaihdunta, polyglutamiinirakenteinen.

 https://www.genenames.org/data/genegroup/#!/group/65

THAP domeenin sisältävä transkriptiotekijöiden ryhmä sinkkisormiproteiineja 

THAP11 (16q22.1), Hematopoieesitekijä, Cbl AV, Parkin vaimennus

Also known as
RONIN; CTG-B43a; CTG-B45d; HRIHFB2206
Summary The protein encoded by this gene contains a THAP domain, which is a conserved DNA-binding domain that has striking similarity to the site-specific DNA-binding domain (DBD) of Drosophila P element transposases. [provided by RefSeq, Jul 2008] Orthologs mouse all

Preferred Names
THAP domain-containing protein 11
THAP11 peptide https://www.ncbi.nlm.nih.gov/protein/NP_065190.2
(Comment. Obs. Polyglutamine structure! Also some pq . “Wheaty” thing. )
ORIGIN      
        1 mpgftccvpg cynnshrdka lhfytfpkda elrrlwlknv sragvsgcfs tfqpttghrl
       61 csvhfqggrk tytvrvptif plrgvnerkv arrpagaaaa rrrqqqqqqq qqqqqqqqqq
      121 qqqqqqqqqq qqsspsasta qtaqlqpnlv sasaavlltl qatvdssqap gsvqpapitp
      181 tgedvkpidl tvqvefaaae gaaaaaaase lqaataglea aecpmgpqlv vvgeegfpdt
      241 gsdhsyslss gtteeellrk lneqrdilal mevkmkemkg sirhlrltea klreelrekd
      301 rllamavirk khgm
//
Conserved Domains (1) summary
pfam05485
Location:5 → 81
THAP; THAP domain

Related articles in PubMed
Hematopoiesis is a complex process regulated by sets of transcription factors in a stage-specific and context-dependent manner. THAP11 is a transcription factor involved in cell growth, ES cell pluripotency, and embryogenesis. Here we showed that THAP11 was down-regulated during erythroid differentiation but up-regulated during megakaryocytic differentiation of cord blood CD34+ cells. Overexpression of THAP11 in K562 cells inhibited the erythroid differentiation induced by hemin with decreased numbers of benzidine-positive cells and decreased mRNA levels of α-globin (HBA) and glycophorin A (GPA), and knockdown of THAP11 enhanced the erythroid differentiation. Conversely, THAP11 overexpression accelerated the megakaryocytic differentiation induced by phorbol myristate acetate (PMA) with increased percentage of CD41+ cells, increased numbers of 4N cells, and elevated CD61 mRNA levels, and THAP11 knockdown attenuated the megakaryocytic differentiation. The expression levels of transcription factors such as c-Myc, c-Myb, GATA-2, and Fli1 were changed by THAP11 overexpression. In this way, our results suggested that THAP11 reversibly regulated erythroid and megakaryocytic differentiation.
PARKIN, an E3 ligase (mutated in familial Parkinson's disease), promotes mitophagy by ubiquitinating mitochondrial proteins for efficient engagement of the autophagy machinery. Specifically, PARKIN-synthesized ubiquitin chains represent targets for the PINK1 kinase generating phosphoS65-ubiquitin (pUb), which constitutes the mitophagy signal. Physiological regulation of PARKIN abundance, however, and the impact on pUb accumulation are poorly understood. Using cells designed to discover physiological regulators of PARKIN abundance, we performed a pooled genome-wide CRISPR/Cas9 knockout screen. Testing identified genes individually resulted in a list of 53 positive and negative regulators. A transcriptional repressor network including THAP11 was identified and negatively regulates endogenous PARKIN abundance. RNAseq analysis revealed the PARKIN-encoding locus as a prime THAP11 target, and THAP11 CRISPR knockout in multiple cell types enhanced pUb accumulation. Thus, our work demonstrates the critical role of PARKIN abundance, identifies regulating genes, and reveals a link between transcriptional repression and mitophagy, which is also apparent in human induced pluripotent stem cell-derived neurons, a disease-relevant cell type. KEYWORDS: PARKIN; THAP11; genome-wide screen; mitophagy; phosphoubiquitin
CblX (MIM309541) is an X-linked recessive disorder characterized by defects in cobalamin (vitamin B12) metabolism and other developmental defects. Mutations in HCFC1, a transcriptional co-regulator which interacts with multiple transcription factors, have been associated with cblX. HCFC1 regulates cobalamin metabolism via the regulation of MMACHC expression
through its interaction with THAP11, a THAP domain-containing transcription factor. The HCFC1/THAP11 complex potentially regulates genes involved in diverse cellular functions including cell cycle, proliferation, and transcription. Thus, it is likely that mutation of THAP11 also results in biochemical and other phenotypes similar to those observed in patients with cblX. We report a patient who presented with clinical and biochemical phenotypic features that overlap cblX, but who does not have any mutations in either MMACHC or HCFC1. We sequenced THAP11 by Sanger sequencing and discovered a potentially pathogenic, homozygous variant, c.240C > G (p.Phe80Leu). Functional analysis in the developing zebrafish embryo demonstrated that both THAP11 and HCFC1 regulate the proliferation and differentiation of neural precursors, suggesting important roles in normal brain development. The loss of THAP11 in zebrafish embryos results in craniofacial abnormalities including the complete loss of Meckel's cartilage, the ceratohyal, and all of the ceratobranchial cartilages. These data are consistent with our previous work that demonstrated a role for HCFC1 in vertebrate craniofacial development. High throughput RNA-sequencing analysis reveals several overlapping gene targets of HCFC1 and THAP11. Thus, both HCFC1 and THAP11 play important roles in the regulation of cobalamin metabolism as well as other pathways involved in early vertebrate development.
The MMACHC gene provides instructions for making a protein that helps convert vitamin B12 (also called cobalamin) into one of two molecules, adenosylcobalamin (AdoCbl) or methylcobalamin (MeCbl). AdoCbl is required for the normal function of an enzyme known as methylmalonyl CoA mutase. This enzyme helps break down certain protein building blocks (amino acids), fats (lipids), and cholesterol. AdoCbl is called a cofactor because it helps methylmalonyl CoA mutase carry out its function. MeCbl is also a cofactor, but for an enzyme known as methionine synthase. This enzyme converts the amino acid homocysteine to another amino acid, methionine. The body uses methionine to make proteins and other important compounds.
Research indicates that the MMACHC protein plays a role in processing different forms of vitamin B12 so that they can be converted to either of the cofactors, AdoCbl or MeCbl. MMACHC also interacts with another protein called MMADHC (produced from the MMADHC gene). Together these proteins transport the processed vitamin B12 to regions of the cell in which each cofactor is needed: specialized structures that serve as energy-producing centers (the mitochondria), where AdoCbl functions, or the fluid inside the cell (the cytoplasm), where MeCbl functions. Additional chemical reactions then convert vitamin B12 into AdoCbl or MeCbl.


  1. NMR studies of a new family of DNA binding proteins: the THAP proteins. Gervais V, et al. J Biomol NMR, 2013 May. PMID 23306615
GeneRIFs: Gene References Into Functions
Bcr-Abl activates various signaling pathways in chronic myelogenous leukemia (CML) cells. The proliferation of Bcr-Abl transformed cells is promoted by c-Myc through the activation of Akt, JAK2 and NF-κB. However, the mechanism by which c-Myc regulates CML cell proliferation is unclear. In our study, we investigated the role of Thanatos-associated protein 11 (THAP11), which inhibits c-Myc transcription, in CML cell lines and in hematopoietic progenitor cells derived from CML patients. The induction of THAP11 expression by Abl kinase inhibitors in CML cell lines and in CML-derived hematopoietic progenitor cells resulted in the suppression of c-Myc. In addition, over-expression of THAP11 inhibited CML cell proliferation. In colony forming cells derived from CML-aldehyde dehydrogenase (ALDH)(hi) /CD34(+) cells, treatment with Abl kinase inhibitors and siRNA depletion of Bcr-Abl induced THAP11 expression and reduced c-Myc expression, resulting in inhibited colony formation. Moreover, overexpression of THAP11 significantly decreased the colony numbers, and also inhibited the expression of c-myc target genes such as Cyclin D1, ODC and induced the expression of p21(Cip1) . The depletion of THAP11 inhibited JAK2 or STAT5 inactivation-mediated c-Myc reduction in ALDH(hi) /CD34(+) CML cells. Thus, the induced THAP11 might be one of transcriptional regulators of c-Myc expression in CML cell. Therefore, the induction of THAP11 has a potential possibility as a target for the inhibition of CML cell proliferation

THAP4 (2q17.3) ferrirautaa sisältävä nitrobindiini pyydystää typpiradikaaleja

 https://www.genenames.org/data/genegroup/#!/group/65

THAP domeenin sisältävä transkriptiotekijä Zf

 

THAP4, (2q17. 3), Nitrobindiini (Ferrirautaa sisältävä proteiini)

Reaktiivisten typpilajien (NOS) pyydystys, sitoo myös NO. Suojaa vapaata l-tyrosiinia- (Säädellyn tyrosiininitaation  merkitys? Haittaako nitraatiosta vain  vai onko hyötyä?
https://www.sciencedirect.com/science/article/abs/pii/S0003986108005031 )

Also known as PP238; CGI-36; Nb(III)
Expression Ubiquitous expression in testis (RPKM 14.3), heart (RPKM 13.9) and 25 other tissues See more Orthologs mouse all
Preferred Names THAP domain-containing protein 4
Names epididymis secretory sperm binding protein
nitrobindin
Isoform2 https://www.ncbi.nlm.nih.gov/protein/NP_001157828.1
Conserved Domains (1) summary
cd07828
Location:10 → 162
nitrobindin; nitrobindin heme-binding domain. Nitrobindin is a heme-containing lipocalin that may reversibly bind nitric oxide (NO). This heme-binding domain forms a beta barrel structure, and in a small family of proteins from tetrapods, it is found C-terminal to a THAP zinc finger domain (a sequence-specific DNA binding domain). Members of this group are putatively related to fatty acid-binding proteins (FABPs).
Conserved Domains (3) summary
pfam05485
Location:4 → 86
THAP; THAP domain
pfam08768
Location:422 → 574
DUF1794; Domain of unknown function (DUF1794)
cl22422
Location:312 → 425
SRP68-RBD; RNA-binding domain of signal recognition particle subunit 68. Signal recognition particles (SRPs) are ribonucleoprotein complexes that target particular nascent pre-secretory proteins to the endoplasmic reticulum. SRP68 is one of the two largest proteins found in SRPs (the other being SRP72), and it forms a heterodimer with SRP72. Heterodimer formation is essential for SRP function. This model characterizes the N-terminal RNA-binding domain SRP68-RBD, a tetratricopeptide-like module. Interactions between SRP68-RBD and SRP RNA (7SL RNA) are thought to facilitate a conformation of SRP RNA that is required for interactions with ribosomal RNA.

Related articles in PubMed

  1. Human nitrobindin: the first example of an all-β-barrel ferric heme-protein that catalyzes peroxynitrite detoxification. De Simone G, et al. FEBS Open Bio, 2018 Dec. PMID 30524950, Free PMC Article *Nitrobindins (Nbs), constituting a heme-protein family spanning from bacteria to Homo sapiens, display an all-β-barrel structural organization. Human Nb has been described as a domain of the nuclear protein named THAP4, whose physiological function is still unknown. We report the first evidence of the heme-Fe(III)-based detoxification of peroxynitrite by the all-β-barrel C-terminal Nb-like domain of THAP4. Ferric human Nb (Nb(III)) catalyzes the conversion of peroxynitrite to NO3 and impairs the nitration of free l-tyrosine. The rate of human Nb(III)-mediated scavenging of peroxynitrite is similar to those of all-α-helical horse heart and sperm whale myoglobin and human hemoglobin, generally taken as the prototypes of all-α-helical heme-proteins. The heme-Fe(III) reactivity of all-β-barrel human Nb(III) and all-α-helical prototypical heme-proteins possibly reflects the out-to-in-plane transition of the heme-Fe(III)-atom preceding peroxynitrite binding. Human Nb(III) not only catalyzes the detoxification of peroxynitrite but also binds NO, possibly representing a target of reactive nitrogen species.KEYWORDS: human nitrobindin; kinetics; peroxynitrite scavenging; protection of l‐tyrosine nitration
  2. Voxelwise genome-wide association study (vGWAS). Stein JL, et al. Neuroimage, 2010 Nov 15. PMID 20171287, Free PMC Article
  3. The THAP domain: a novel protein motif with similarity to the DNA-binding domain of P element transposase. Roussigne M, et al. Trends Biochem Sci, 2003 Feb. PMID 12575992Abstract We have identified a novel evolutionarily conserved protein motif - designated the THAP domain - that defines a new family of cellular factors. We have found that the THAP domain presents striking similarities with the site-specific DNA-binding domain (DBD) of Drosophila P element transposase, including a similar size, N-terminal location, and conservation of the residues that define the THAP motif, such as the C2CH signature (Cys-Xaa(2-4)-Cys-Xaa(35-50)-Cys-Xaa(2)-His). Our results suggest that the THAP domain is a novel example of a DBD that is shared between cellular proteins and transposases from mobile genomic parasites.


,

THAP1, THAP-domaanin omaava mahdollinen Zf-proteiini

 https://www.genenames.org/data/genegroup/#!/group/65
THAP domeenin sisältävä tgranskriptiotekijä, Zf 

(Sinkkiä sitoneva ) THAP containing domain: 12 geeni ja 3 transkriptiotekijää.
THANATOS-associated protein, death associated protein.

THAP1(8p11.21), DYT6.

Also known as DYT6 (dystonia 6)
Summary The protein encoded by this gene contains a THAP domain, a conserved DNA-binding domain. This protein colocalizes with the apoptosis response protein PAWR/PAR-4 in promyelocytic leukemia (PML) nuclear bodies, and functions as a proapoptotic factor that links PAWR to PML nuclear bodies. Alternatively spliced transcript variants encoding distinct isoforms have been observed. [provided by RefSeq, Jul 2008]
Expression Ubiquitous expression in testis (RPKM 7.0), thyroid (RPKM 5.5) and 25 other tissues See more Orthologs mouse all
Preferred Names
THAP domain-containing protein 1
Names
4833431A01Rik
THAP domain containing, apoptosis associated protein 1
THAP domain protein 1
nuclear proapoptotic factor
https://www.ncbi.nlm.nih.gov/protein/NP_060575.1

ORIGIN      
        1 mvqscsaygc knrydkdkpv sfhkfpltrp slckeweaav rrknfkptky ssicsehftp
       61 dcfkrecnnk llkenavpti flctephdkk edllepqeql pppplpppvs qvdaaigllm
      121 pplqtpvnls vfcdhnytve dtmhqrkrih qleqqveklr kklktaqqrc rrqerqlekl
      181 kevvhfqkek ddvsergyvi lpndyfeive vpa

Conserved Domains (1) summary
smart00980
Location:4 → 82
THAP
The THAP domain is a putative DNA-binding domain (DBD) and probably also binds a zinc ion.
It features the conserved C2CH architecture (consensus sequence: Cys - 2-4 residues - Cys - 35-50 residues - Cys - 2 residues - His). Other universal features include the location of the domain at the N-termini of proteins, its size of about 90 residues, a C-terminal AVPTIF box and several other conserved residues. Orthologues of the human THAP domain have been identified in other vertebrates and probably worms and flies, but not in other eukaryotes or any prokaryotes.
Related articles in PubMed
  1. Genetic screening of THAP1 in primary dystonia patients of India. Giri S, et al. Neurosci Lett, 2017 Jan 10. PMID 27913194
  2. New THAP1 mutation and role of putative modifier in TOR1A. Piovesana LG, et al. Acta Neurol Scand, 2017 Feb. PMID 26940431
GeneRIFs: Gene References Into Functions
PLoS Genet. 2018 Jan 24;14(1):e1007169. doi: 10.1371/journal.pgen.1007169. eCollection 2018 Jan. Mutations in THAP1/DYT6 reveal that diverse dystonia genes disrupt similar neuronal pathways and functions.Zakirova Z1, Fanutza T1, Bonet J1, Readhead B2, Zhang W3, Yi Z3, Beauvais G4, Zwaka TP5, Ozelius LJ6,7, Blitzer RD8, Gonzalez-Alegre P4,9, Ehrlich ME1,2.Abstract
Dystonia is characterized by involuntary muscle contractions. Its many forms are genetically, phenotypically and etiologically diverse and it is unknown whether their pathogenesis converges on shared pathways. Mutations in THAP1 [THAP (Thanatos-associated protein) domain containing, apoptosis associated protein 1], a ubiquitously expressed transcription factor with DNA binding and protein-interaction domains, cause dystonia, DYT6. There is a unique, neuronal 50-kDa Thap1-like immunoreactive species, and Thap1 levels are auto-regulated on the mRNA level. However, THAP1 downstream targets in neurons, and the mechanism via which it causes dystonia are largely unknown. We used RNA-Seq to assay the in vivo effect of a heterozygote Thap1 C54Y or ΔExon2 allele on the gene transcription signatures in neonatal mouse striatum and cerebellum. Enriched pathways and gene ontology terms include eIF2α Signaling, Mitochondrial Dysfunction, Neuron Projection Development, Axonal Guidance Signaling, and Synaptic LongTerm Depression, which are dysregulated in a genotype and tissue-dependent manner. Electrophysiological and neurite outgrowth assays were consistent with those enrichments, and the plasticity defects were partially corrected by salubrinal. Notably, several of these pathways were recently implicated in other forms of inherited dystonia, including DYT1. We conclude that dysfunction of these pathways may represent a point of convergence in the pathophysiology of several forms of inherited dystonia.

THAP2
THAP3
THAP4
THAP4
THAP5
THAP6
THAP7
THAP8
THAP9
THAP10
THAP11
THAP12
Pseudogeenejä useita:
THAP5P1,Kr.7.
THAP5P2, Kr.3.
THAP12P1, X-kromosomi.
THAP12P3, Kr.10, PRKRIRP3.
THAP12P4, Kr.11, PRKRIRP4.
THAP12P6, Kr.13, PRKRIRP6.
THAP12P7, Kr. 8, PRKRIRP7.
THAP12P8, Kr.1, PRKRIRP8.
THAP12P9, Kr.4, PRKRIRP9.
THAP12P10, Kr.13, PRKRIRP10.
Kaksi muuta THAP12P pseudogeeniä ( kromosomeissa 15 ja 12)

Name/Gene ID
Description
Location
Aliases
Select item 55145
ID: 55145
THAP domain containing 1 [Homo sapiens (human)]
Chromosome 8, NC_000008.11 (42836674..42843331, complement)
DYT6
Select item 57215
ID: 57215
THAP domain containing 11 [Homo sapiens (human)]
Chromosome 16, NC_000016.10 (67842310..67844195)
CTG-B43a, CTG-B45d, HRIHFB2206, RONIN
Select item 51078
ID: 51078
THAP domain containing 4 [Homo sapiens (human)]
Chromosome 2, NC_000002.12 (241584405..241637543, complement)
CGI-36, Nb(III), PP238
Select item 80764
ID: 80764
THAP domain containing 7 [Homo sapiens (human)]
Chromosome 22, NC_000022.11 (20999772..21002115, complement)

Select item 168451
ID: 168451
THAP domain containing 5 [Homo sapiens (human)]
Chromosome 7, NC_000007.14 (108562144..108569768, complement)

Select item 5612
ID: 5612
THAP domain containing 12 [Homo sapiens (human)]
Chromosome 11, NC_000011.10 (76349956..76380965, complement)
DAP4, P52rIPK, PRKRIR, THAP0




Select item 90326
ID: 90326
THAP domain containing 3 [Homo sapiens (human)]
Chromosome 1, NC_000001.11 (6624616..6635586)

Select item 152815
ID: 152815
THAP domain containing 6 [Homo sapiens (human)]
Chromosome 4, NC_000004.12 (75513944..75547334)

.



Select item 199745
ID: 199745
THAP domain containing 8 [Homo sapiens (human)]
Chromosome 19, NC_000019.10 (36034985..36054762, complement)





Select item 79725
ID: 79725
THAP domain containing 9 [Homo sapiens (human)]
Chromosome 4, NC_000004.12 (82900650..82920283)
hTh9
.



Select item 83591
ID: 83591
THAP domain containing 2 [Homo sapiens (human)]
Chromosome 12, NC_000012.12 (71663897..71680648)


Select item 56906
ID: 56906
THAP domain containing 10 [Homo sapiens (human)]
Chromosome 15, NC_000015.10 (70881342..70892433, complement)

..


tisdag 28 maj 2019

ADNP, Zf Homeobox-proteiini. Aktiviteetistä riippuva neuroprotektiivinen tekijä

ADNP

https://www.omim.org/entry/611386
ADNP is homeodomain-containing zinc finger protein with transcription factor activity that is essential for brain formation (Gozes, 2007; Mandel et al., 2007). ADNP interacts with components of the BAF complex, the eukaryotic equivalent of the SWI/SNF complex in yeast that is involved in the regulation of gene expression (summary by Helsmoortel et al., 2014). See, e.g., ARID1A (603024

 https://www.ncbi.nlm.nih.gov/gene/23394

ADNP activity dependent neuroprotector homeobox [ Homo sapiens (human) ]

Also known as
ADNP1; HVDAS; MRD28
Summary  Vasoactive intestinal peptide is a neuroprotective factor that has a stimulatory effect on the growth of some tumor cells and an inhibitory effect on others. This gene encodes a protein that is upregulated by vasoactive intestinal peptide and may be involved in its stimulatory effect on certain tumor cells. The encoded protein contains one homeobox and nine zinc finger domains, suggesting that it functions as a transcription factor. This gene is also upregulated in normal proliferative tissues. Finally, the encoded protein may increase the viability of certain cell types through modulation of p53 activity. Alternatively spliced transcript variants encoding the same protein have been described. [provided by RefSeq, Jul 2008]
Expression Ubiquitous expression in testis (RPKM 11.8), ovary (RPKM 8.8) and 25 other tissues See more Orthologs mouse all
 
Preferred Names
activity-dependent neuroprotector homeobox protein
Names
ADNP homeobox 1
activity-dependent neuroprotective protein
 
https://www.ncbi.nlm.nih.gov/protein/NP_001269460.1
 
Conserved Domains (2) summary
smart00389
Location:768811
HOX; Homeodomain
sd00020
Location:491510
ZF_C2H2; C2H2 Zn finger [structural motif]

ZEB1 , "ZFHEP (10p11.22), "Zn Finger E-box Homeobox1"

 https://www.ncbi.nlm.nih.gov/gene/6935
Tällä sinkkisormi-transkriptiofaktorilla on tehtävää interleukiini2:n vaimentajana. Mutaatiot assosioituvat silmäsairauksiin. Niistä geeni saakin useita nimilyhennyksiä. Rakennenimi ZFHEP kertoo että se on sinkkisormiproteiini jolla on E-box ja Homeo-box.


Also known as BZP; TCF8; AREB6; FECD6; NIL2A; PPCD3; ZFHEP; ZFHX1A; DELTAEF1
Summary This gene encodes a zinc finger transcription factor. The encoded protein likely plays a role in transcriptional repression of interleukin 2. Mutations in this gene have been associated with posterior polymorphous corneal dystrophy-3 and late-onset Fuchs endothelial corneal dystrophy. Alternatively spliced transcript variants encoding different isoforms have been described.[provided by RefSeq, Mar 2010]
Expression Ubiquitous expression in endometrium (RPKM 12.8), brain (RPKM 12.1) and 23 other tissues See more Orthologs mouse all
 
Preferred Names
zinc finger E-box-binding homeobox 1
Names
delta-crystallin enhancer binding factor 1;  (DELTAEF1)
negative regulator of IL2;  (NIL2A)
posterior polymorphous corneal dystrophy 3;(PPCD3)
transcription factor 8 (represses interleukin 2 expression); (TCF8)
zinc finger homeodomain enhancer-binding protein; (ZFHEP)

NP_001121600.1  zinc finger E-box-binding homeobox 1 isoform a

See identical proteins and their annotated locations for NP_001121600.1
Description
Transcript Variant: This variant (1) encodes isoform a.
Conserved Domains (5) summary
smart00389
Location:577613
HOX; Homeodomain
COG5048
Location:913966
COG5048; FOG: Zn-finger [General function prediction only]
sd00017
Location:890910
ZF_C2H2; C2H2 Zn finger [structural motif]
pfam00096
Location:224246
zf-C2H2; Zinc finger, C2H2 type
pfam13465
Location:930955
zf-H2C2_2; Zinc-finger double domain

Related articles in PubMed












Sirtuiinitekstin yhteydessä oli sivuhuomautuksena asiaa ZEB1-proteiinista jonka SIRT1 rekrytoi.
KUVA2

Kuva 2 esittää kaavamaisesti Sirtuiinien suorittaman positiivisen ja negatiivisen EMT-säätelyn.
Positiivista( = EMT:tä edistävää): TGF-beeta signalointiin liittyy Sirtuiini1- proteiinin lisääntyminen. SIRT1 rekrytoi ZEB1-proteiinin
( ZEB1 on C2H2- sinkkisormiproteiini ja transkriptiofaktori ja osallistuu tuumorin invaasioon ja metaboliaan. Se on EMT:n mestarisäätelijä. Sitä itseään säätelee usea signaalijärjestelmä kuten Wnt, TGF-beeta, NFkB, HIF ja miRNA. Sen onkogeeninen rooli on E-cadheriini- proteiinin tukahduttaminen, onhan E-Cad  tärkein solu-solu-adheesiomolekyyli. ZEB1 pääsee vaikuttamaan E-Cadheriiniin tekemällä interaktion useiden kromatiinia muokkaavan tekijän kanssa, kuten CtBP ja Swi/SNF-kompleksi. Toisaalta ZEB1 aktivoi suoraan niiden geenien promoottoreita, jotka osallistuvat EMT-ohjelmaan. ZEB1 tekee interaktion joko SMAD- proteiinien tai p300/CAF kanssa ja aktivoi TGFbeetan kohdegeenin CDH2 (N-Cadheriinin, joka on mesenkymaalinen cadheriini ja olennainen tuumorin progressiolle). ZEB1- yli-ilmenemä useissa syöpälinjoissa ( havaittu haima-, keuhko-, maksasyövässä, osteosarkoomassa, rintasyövässä, paksusuolisyövässä) indusoi EMT:tä ja edistää solujen invaasiota. Tieto vuodelta 2017) .
  • Schematic representation of positive and negative regulation of EMT by sirtuins. Positive: TGF‐β signaling is associated with an increase in Sirt1. Sirt1 is recruited by Zeb1 to the E‐cadherin promoter and causes transcriptional repression.

ZHX2 "Sinkkisormi ja homeobox" ZHX2 , alfafetoproteiininsäätelijä1, RAF

 Sinkkisormi ja homeobox- proteiinit on ryhmitelty samaan  rakenteelliseen sinkkisormiproteiiniryhmään, jossa on myös pseudogeenejä;  yhteensä  15 geeniä ja niistä 10 on transkriptionaalisia tekiöitä . Mutta tässä koetan löytää ensin  toimivia (repressori)geenejä,  jotka ovat vain " Zf  and Homeobox containing " , ZHX.  Tässä katson  tietoja ZHX2 ja ZHX1 geeneistä. ZEB1 kuuluu myös näihin (ZFHX1A). Siitä erikseen.

https://www.ncbi.nlm.nih.gov/gene/22882

  •  ZHX2
 Tämä homeobox2- sinkkisormiproteiini ZHX2 on toiselta nimeltä RAF tai AFR1 ja tarkoittaa alfafetoproteiinisäätelijää 1. ZHX2-geeni säätelee myös Glypikaania (GPC3) vaimentamalla sen geenä. ZHX2 siirtyy tumaan ja GPC3-geenipromoottoriin. Mutta jos ZHX2 on vaimentunut, pääsee glypikaanieeni aktivoitumaan. Esim maksasyöpä aktivoi sen ja niin glypikaani3 on eräs  diagnostinen markkeri, muta ei niin hyvä kuin alfafetoproteiini, muta yhdessä niiden diagnostinen täsmällisyyson vielä suurempi.

ZHX2 (8q24.13)  "Zinc Finger and Homeobox 2"

RAF= Regulator of Alphafetoprotein
AFR1= Alfa-fetoproteiini säätelijä 1

Also known as RAF; AFR1
Summary The members of the zinc fingers and homeoboxes gene family are nuclear homodimeric transcriptional repressors that interact with the A subunit of nuclear factor-Y (NF-YA) and contain two C2H2-type zinc fingers and five homeobox DNA-binding domains. This gene encodes member 2 of this gene family. In addition to forming homodimers, this protein heterodimerizes with member 1 of the zinc fingers and homeoboxes family. [provided by RefSeq, Jul 2008]
Expression Ubiquitous expression in ovary (RPKM 12.8), lymph node (RPKM 11.9) and 25 other tissues See more Orthologsmouse all
 https://www.ncbi.nlm.nih.gov/pubmed/31113610
Serum GPC3 is inferior to AFP in the differential diagnosis between HCC and LC. However, the combination of GPC3 and AFP exhibited a much better performance.

B-hepatiittivirus säätää alas ZHX2-geenin ilmentymistä mikä taas edistää maksasolusyävän proliferoitumista.

Hodginin lymfoomassa on transkriptionaalinen deregulaatio, viallinen säätyminen ZHX2-geenissä. 

ZWIM Zn Finger proteiineista

https://pdfs.semanticscholar.org/052b/54977c6cceb5f70c1292b1293c2810d0a119.pdf

Näissä sinkkisormiproteiineissa on RING domeenin suhteen  proksimaalisesti  SWIM, joka tarkoittaa SWI2/SNF2 ja MuDR (of undetermined function). Havaittu sinkkisormi rakennelma on muotoa CXCXCXH. Näitä geenejä on 9 . Niissä ei ole transkriptotekijöitä joukossa. Nimeltä mainittuja esimerkkejä näistä on m.m. MAP3K1, ZSWIM5,ZSWIM6 geenit.
Otan artikkeleita esiin.  
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653270/
Tässä on oivallusta antava kuva MEKK1 proteiinista, jolla on SWIM domaani proksimaalisesti RING-domaanista . Kuva osoittaa ne C ja H aminohapot, jotka näissä domeeneissa osallistuvat sinkkisormimuodostumaan  Zn jonin avulla. 

måndag 27 maj 2019

PIAS E3 SUMO-ligaasien osuus sumoylaatiossa

http://cancerres.aacrjournals.org/content/77/7/1542

STAT geenit ja niiden domeenit.

https://www.ncbi.nlm.nih.gov/protein/NP_009330.1

STAT-geenien domaaneista.Tämän tekstin löysin etsiessäni selitystä SH2 domeenille STAT2 geenin kohdalta.
https://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?uid=198236

STAT-geenejä on seitsemän, STAT1, STAT2, STAT3, STAT4, STAT5 ( A ja B)   ja STAT6.
STATgeenien domaanit ovat
NTD, N-terminal domain,
CCD, Coiled-Coil Domain
DBD,  DNA binding domain,
LD alpha helical linker domain
SH2,src homology 2 domain
TAD, Transactivation domain
C-terminaali

lördag 25 maj 2019

Sfingomyeliinin metabolian ja katabolian alueesta ja sen pullonkaula . Entsyymi ASAH1 (8p22) ja ASAH2 (10q11.23)

Sfigomyeliini kuuluu kehon fosfolipidien joukkoon tärkeänä  molekyylinä, joka valmistuu DE NOVO soluntuottamista aineista entsyymien avulla:  (B6 vitamiinin aktivoimasta seriiniaminohaposta ja soluntuottamasta aktivoidusta  palmitiinihaposta,  jotka kondensoituvat K1-vitamiinin toimiessa kofaktorina   yhdeksi molekyyliksi joka käy läpi muutoksia ) dihydrosfingosiini dhSo  eli  sfinganiini Sa) ja Sfingosiini (So) kohden  keramideja. kuten N-Acyl-Sfingosiini ( ceramidi). Siitä käsin voi muodostuu sekä glykolipidejä että sfingomyeliiniä.
Sfingomyeliini taas katabolisella tiellään  muodostaa SMM, sfingomyeliinimetaboliitteja.
 Niitä on  perustavasti neljää:
(1).  takaisinpäin lysosomissa  muodostuvaa keramidia   N-acyl-sfingosiiniä.
(2)  siitä edelleen  taaksepäin:    sfingosiinia (So)
tai  (3) Sfingosiinin  fosforylaatiotuotetta Sfingosiini-1-fosfaattia( So-1-P)
tai   lysosomin avulla SPL, sfingosyylifosfaryylikoliinia. (SphingosylPhospharyl Cholin) .
Sfingomyeliinin säästötie SALVAGE on uudestaan  NAcyl-keramidin muodostamista ja siitä edellen glykolipidejä tai Sfingomyeliinejä.

Kataboliatie onkin sitten  vaikeammin hahmotettavissa.
Sanotaan että  sfingomyeliinin verkostosta pääsee pois (EXIT)  ainoastaan siten, että So-1-P muuttuu  fosfatidyletanolamidiksi ja rasvahappoaldehydiksi.
Sitten onkin paljon selvitelty, mitä kaikkea voi tällä reittiytyneellä alueella  tapahtua.
On havaittu että So, sfingosiini voi  suorittaa kolmea  aineenvaihdunnallista  jatkoreittiä:
Se voi uudestaan (1) N-asyloitua keramidiksi (  SALVAGE tie).
Se voi (2) fosforyloitua So-1-P- muotoon.  On havaittu, että on SPP1 ja SPP2-entsyymit, jotka ovat sfingosiinifosfaattifosfataaseja ja voivat palauttaa  takaisin  tärkeään sfingosiinimuotoon (So).
Sitten on havaittu myös (3) N-metyloituminen  ja tällä tiellä löytyy N-Me-So, N,N-2MeSo ja N,N,N-3MeSo  ja nämä ovat vaikuttavia  molekyylejä eikosanoidikaskadin alueella .
Sanotaan.että tumasäätö vaikuttuu myös - tästä joskus erikseen. En ole tästä nähnyt kovin montaa artikkelia.
 https://www.ncbi.nlm.nih.gov/pubmed/8621258
 https://www.ncbi.nlm.nih.gov/pubmed/1657377?dopt=Abstract&holding=npg

Tässä  mainitsen  yleensä   kuvatun  kataboliseen kohdan:  jossa  joko Sfinganiinifosfaatti (Sa-P)  tai Sfingosiinifosfaatti  (So-P) joutuvat lyaasin kohteeksi ja muuttuvat etanolamiinifosfaatiksi ja  rasvahappoaldehydiksi (trans-2-hexanaali).
-------

Löysin  joukon  entsyymeitä, joita nyt katson.ASAH1 (aCDase, pH 4-5) ), ASAH2 (nCDase, pH 7-9)
https://www.ncbi.nlm.nih.gov/gene/427
Niiden tehtävä on tuottaa  sfingosiinia (SO) . Esim ASAH2 on ruoansulatuksellinen entsyymi ja hajoitata sfingomyeliinejä,  joita ravinnosta tulee. 
  • ASAH1 (8p22) asidinen keramidaasi , aCDase , lysosomaalinen
N-acylsphingosine (Cer)  amidohydrolase 1 [ Homo sapiens (human) ]
Also known as
AC; PHP; ASAH; PHP32; ACDase; SMAPME
Summary  This gene encodes a member of the acid ceramidase family of proteins. Alternative splicing results in multiple transcript variants, at least one of which encodes a preproprotein that is proteolytically processed. Processing of this preproprotein generates alpha and beta subunits that heterodimerize to form the mature lysosomal enzyme, which catalyzes the degradation of ceramide (Cer) into sphingosine  (So) and free fatty acid (FFA) . This enzyme is overexpressed in multiple human cancers and may play a role in cancer progression. Mutations in this gene are associated with the lysosomal storage disorder, Farber lipogranulomatosis, and a neuromuscular disorder, spinal muscular atrophy with progressive myoclonic epilepsy. [provided by RefSeq, Oct 2015]  Expression  Broad expression in thyroid (RPKM 225.8), heart (RPKM 191.4) and 24 other tissues See more  Orthologs  mouse all
 
Preferred Names
acid ceramidase
Names
N-acylethanolamine hydrolase ASAH1
N-acylsphingosine amidohydrolase (acid ceramidase) 1
acid CDase
acylsphingosine deacylase
putative 32 kDa heart protein
Conserved Domains (2) summary
cd01903
Location:128373
Ntn_AC_NAAA; AC_NAAA This conserved domain includes two closely related proteins, acid ceramidase (AC, also known as N-acylsphingosine amidohydrolase), and N-acylethanolamine-hydrolyzing acid amidase (NAAA). AC catalyzes the hydrolysis of ceramide to sphingosine and fatty acid. Ceramide is required for the biosynthesis of most sphingolipids and plays an important role in many signal transduction pathways by inducing apoptosis and/or arresting cell growth. An inherited deficiency of AC activity leads to the lysosomal storage disorder known as Farber disease. AC is considered a "rheostat" important for maintaining the proper intracellular levels of these lipids since hydrolysis of ceramide is the only source of sphingosine in cells. NAAA is a eukaryotic glycoprotein that hydrolyzes bioactive N-acylethanolamines, including anandamide (an endocannabinoid) and N-palmitoylethanolamine (an anti-inflammatory and neuroprotective substance), to fatty acids and ethanolamine at acidic pH. NAAA shows structural and functional similarity to acid ceramidase, but lacks the ceramide-hydrolyzing activity of AC.
pfam15508
Location:68133
NAAA-beta; beta subunit of N-acylethanolamine-hydrolyzing acid amidase
Related articles in PubMed
GeneRIFs: Gene References Into Functions

  •  ASAH2 (10q11.23)  neutraali keramidaasi  (nCDase)

ASAH2 N-acylsphingosine amidohydrolase 2 [ Homo sapiens (human) ]

Also known as
HNAC1; BCDase; LCDase; NCDase; N-CDase
Summary
Ceramidases (EC 3.5.1.23), such as ASAH2, catalyze hydrolysis of the N-acyl linkage of ceramide, a second messenger in a variety of cellular events, to produce sphingosine. Sphingosine exerts both mitogenic and apoptosis-inducing activities, and its phosphorylated form functions as an intra- and intercellular second messenger (see MIM 603730) (Mitsutake et al., 2001 [PubMed 11328816]).[supplied by OMIM, Mar 2008]
Expression
Biased expression in duodenum (RPKM 35.9), small intestine (RPKM 31.0) and 1 other tissue See more
Orthologs
Preferred Names
neutral ceramidase
Names
N-acylsphingosine amidohydrolase (non-lysosomal ceramidase) 2
acylsphingosine deacylase 2
mitochondrial ceramidase
neutral/alkaline ceramidase
non-lysosomal ceramidase
Conserved Domains (3) summary
PTZ00487
Location:100743
PTZ00487; ceramidase; Provisional
pfam04734
Location:102573
Ceramidase_alk;
Neutral/alkaline non-lysosomal ceramidase, N-terminal
This family represents N-terminal domain of a group of neutral/alkaline ceramidases found in both bacteria and eukaryotes. The EC classification is EC:3.5.1.23. The enzyme hydrolyzes ceramide to generate sphingosine and fatty acid. The enzyme plays a regulatory role in a variety of physiological events in eukaryotes and also functions as an exotoxin in particular bacteria. This N-terminal domain carries two metal-binding sites, the first for Zn2+ residing within the domain, and the second, for Mg2+/Ca2+ lying at the interface between the two domains.
pfam17048
Location:575742
Ceramidse_alk_C; Neutral/alkaline non-lysosomal ceramidase, C-terminalThis family represents C-terminal domain of a group of neutral/alkaline ceramidases found in both bacteria and eukaryotes. The EC classification is EC:3.5.1.23. The enzyme hydrolyzes ceramide to generate sphingosine and fatty acid. The enzyme plays a regulatory role in a variety of physiological events in eukaryotes and also functions as an exotoxin in particular bacteria. This C-terminal tail of the enzyme is highly conserved across all species and may play a role in the interaction of the enzyme with the plasma membranes. The tail is also vital for the stabilization of the enzyme as a whole.
Related articles in PubMed
GeneRIFs: Gene References Into Functions
  •   Suoliston  neutraalin keramidaasin merkitys terveydessä 19 hakulöytöä sanoilla "intestinal ceramidase". Pidän tätä tärkeänä entsyyminä ja otan kaikki löydöt tähän netistä:

 https://www.ncbi.nlm.nih.gov/pubmed/?term=intestinal+neutral+ceramidase%2C

Nilsson Å, Duan RD.
Am J Physiol Gastrointest Liver Physiol. 2019 Apr 1;316(4):G425-G445. doi: 10.1152/ajpgi.00320.2018. Epub 2018 Dec 21.
2.
García-Barros M, Coant N, Kawamori T, Wada M, Snider AJ, Truman JP, Wu BX, Furuya H, Clarke CJ, Bialkowska AB, Ghaleb A, Yang VW, Obeid LM, Hannun YA.
FASEB J. 2016 Dec;30(12):4159-4171. Epub 2016 Sep 8.
3.
Snider AJ, Wu BX, Jenkins RW, Sticca JA, Kawamori T, Hannun YA, Obeid LM.
Prostaglandins Other Lipid Mediat. 2012 Dec;99(3-4):124-30. doi: 10.1016/j.prostaglandins.2012.08.003. Epub 2012 Aug 31.
4.
Maltesen HR, Troelsen JT, Olsen J.
J Cell Biochem. 2010 Dec 1;111(5):1330-6. doi: 10.1002/jcb.22862.
5.
Duan RD, Nilsson A.
Prog Lipid Res. 2009 Jan;48(1):62-72. doi: 10.1016/j.plipres.2008.04.003. Epub 2008 Nov 8. Review.
6.
Ohlsson L, Hjelte L, Hühn M, Scholte BJ, Wilke M, Flodström-Tullberg M, Nilsson A.
J Pediatr Gastroenterol Nutr. 2008 Nov;47(5):547-54. doi: 10.1097/MPG.0b013e3181826daf.
7.
Ohlsson L, Palmberg C, Duan RD, Olsson M, Bergman T, Nilsson A.
Biochimie. 2007 Aug;89(8):950-60. Epub 2007 Mar 19.
8.
Duan RD, Cheng Y, Jönsson BA, Ohlsson L, Herbst A, Hellström-Westas L, Nilsson A.
Pediatr Res. 2007 Jan;61(1):61-6.
9.
Duan RD, Verkade HJ, Cheng Y, Havinga R, Nilsson A.
Biochim Biophys Acta. 2007 Feb;1771(2):196-201. Epub 2006 Dec 15.
10.
Tani M, Ito M, Igarashi Y.
Cell Signal. 2007 Feb;19(2):229-37. Epub 2006 Sep 11. Review.
11.
Kono M, Dreier JL, Ellis JM, Allende ML, Kalkofen DN, Sanders KM, Bielawski J, Bielawska A, Hannun YA, Proia RL.
J Biol Chem. 2006 Mar 17;281(11):7324-31. Epub 2005 Dec 27.
12.
Nilsson A, Duan RD.
J Lipid Res. 2006 Jan;47(1):154-71. Epub 2005 Oct 26. Review.
13.
Olsson M, Duan RD, Ohlsson L, Nilsson A.
Am J Physiol Gastrointest Liver Physiol. 2004 Oct;287(4):G929-37. Epub 2004 Jun 24.
14.
15.
16.
17.
Duan RD, Cheng Y, Yang L, Ohlsson L, Nilsson A.
Lipids. 2001 Aug;36(8):807-12.
PMID:
11592731
18.
Lundgren P, Nilsson A, Duan RD.
Dig Dis Sci. 2001 Apr;46(4):765-72.
PMID:
11330410
19.
Hertervig E, Nilsson A, Nyberg L, Duan RD.
Cancer. 1997 Feb 1;79(3):448-53.
PMID:
9028353