Leta i den här bloggen


tisdag 23 januari 2018

SMAD8:aa sitova proteiini CREBZF ja BMP-signalointi

Mol Cell Biochem. 2012 Sep;368(1-2):147-53. doi: 10.1007/s11010-012-1353-4. Epub 2012 Jun 16. CREBZF, a novel Smad8-binding protein. Lee JH1, Lee GT,   Abstract

Suomennosta:  SMAD-proteiinit ovat sekundärilähettejä TGF-beeta signalointitiessä. TGF-beeta-reseptorit fosforyloivat  R-SMAD -proteiinit ligandin sitoutuessa.  Aktivoituneet R-SMAD-proteiinit  translokoituvat tumaan ja toimivat  transkriptiotekijöinä. R-SMAD-proteiinien joukossa  kuitenkin SMAD1, SMAD5 ja SMAD8  välittävät signaaleja toisessa,  BMP-signaalitiessä.  TGFbetasignaalitiessä ovat välittäjinä  R-SMAD  2 ja 3.
 
  • Smads are the secondary messengers of the transforming growth factor-β (TGF-β) signaling pathway. TGF-β receptors phosphorylate the Receptor Smads (R-Smads) upon ligand binding; activated R-Smads translocate to the nucleus and function as transcription factors. Among the R-Smads, Smads 1, 5, and 8 mainly mediate signals in the bone morphogenetic proteins (BMPs) pathways, while Smads 2/3 mediate TGF-β signaling.
 TGF-beeta-signaalitiessä SMAD-säätely on  hyvin selviteltyä, mmutta  BMP-signaalitiessä SMAD1, SMAD 5 ja SMAD8  proteiinien suhteet ovat olleet jokseenkin   vähän selviteltyjä. Tässä  artikkelissa kerrotaan BMP-signaalitien  spesifisestä säätymisestä  signaalia välittävien SMAD-proteiinien avulla.  Tunnistettiin uusi  SMAD:ia - sitova molekyyli CREBZF, transkriptiotekijä, jonka rakenteessa on baasinen  leusiini zipper- alue bZIP.  Ihmisen PC solulinjasta  vahvistettiin  CRBZF ja SMAD1, -5 ja -8 interaktiot. BM6:n indusoiman solukasvun inhibition poisti CREBZF yli-ilmentymä,  joka esti BMP- vaste-elementin  promoottorin aktiivisuuden. Täten CRBZF estää  BMP-6 funktiota tekemällä interaktion SMAD:in kanssa.  Tämän uuden SMADeja sitovan proteiinin tunnistaminen  m.m.  auttaa ymmärtämään  BMP-signalointitien modulaatiota.
  •  The regulation of Smads in the TGF-β signal pathway has been well defined, but the relationship of Smads 1, 5, and 8 to the BMP pathways has been relatively understudied. To understand the specific regulation of BMP mediating Smads, we performed yeast two-hybrid screening using the Mad homology 2(MH2) domain of Smad8 as bait. In this screening, novel Smad-binding protein, CREBZF-a basic region-leucine zipper (bZIP) transcription factor-was identified. The interaction of CREBZF and Smads 1, 5, and 8 was confirmed by immunoprecipitation in a human prostate cancer cell line. Overexpression of CREBZF inhibited the promoter activity of BMP response element and abolished the cell growth inhibition induced by BMP-6. Thus, CREBZF inhibits the function of BMP-6 by interacting with Smads. The identification of this novel Smads-binding protein, among others will help us understand the modulation of BMP-signaling pathways.
PMID:
22707059
DOI:
10.1007/s11010-012-1353-4
[Indexed for MEDLINE] 

Kommentti muutamissa SMAD tekijässä on BMP reseptori ja ja interaktissa  näihin SMAD jäseniin CREBZF voi  pyyhkiä pois BMP-6:n  kasvu-inhibitorisen vaikutuksen. 
Esim  PCa:ssa SMAD 9 on ylössäätyneenä ja siinä on BMP-R.
Smad tekijöillä on  vaikutusta EMT:hen.  
SMAD9 geeni omaa monta  nimeä esim  SMAD 8/9, SMD8 tai SMAD88 tai PPH2( essentiellin pulmonaarisen hypertension etiologinen tekijä). 

måndag 22 januari 2018

Nobeleita proteosomifunktiosta, ubikvitiinistä

https://www.youtube.com/watch?v=Ta5FyeExLlk

Proteosomiaktivaattori PA28 (2017)

http://www.cell.com/structure/fulltext/S0969-2126%2817%2930247-2

Highlights

  • Crystal structures of mouse PA28α7, PA28β7, and PA28α4β3 were determined
  • Despite forming a heptamer PA28β fails to bind to proteasomes
  • The alternating arrangement of four α and three β subunits in PA28αβ is unchangeable
  • β-β and α-α contacts are less stable than α-β interfaces

Summary

The heptameric proteasome activator (PA) 28αβ is known to modulate class I antigen processing by docking onto 20S proteasome core particles (CPs). The exact stoichiometry and arrangement of its α and β subunits, however, is still controversial. Here we analyzed murine PA28 complexes regarding structure and assembly. Strikingly, PA28α, PA28β, and PA28αβ preparations form heptamers, but solely PA28α and PA28αβ associate with CPs. Co-expression of α and β yields one unique PA28αβ species with an unchangeable subunit composition. Structural data on PA28α, PA28β, and PA28αβ up to 2.9 Å resolution reveal a PA28α4β3 complex with an alternating subunit arrangement and a single α-α interface. Differential scanning fluorimetry experiments and activity assays classify PA28α4β3 as most stable and most active, indicating that this assembly might represent the physiologically relevant species. Together, our data resolve subunit composition and arrangement of PA28αβ and clarify how an asymmetric heptamer can be assembled from two highly homologous subunits.

Proteosomikokoontuma PA28-Si

Sci Rep. 2013;3:1381. doi: 10.1038/srep01381.

Removal of damaged proteins during ES cell fate specification requires the proteasome activator PA28.

Abstract
In embryonic stem cells, removal of oxidatively damaged proteins is triggered upon the first signs of cell fate specification but the underlying mechanism is not known. Here, we report that this phase of differentiation encompasses an unexpected induction of genes encoding the proteasome activator PA28αβ (11S), subunits of the immunoproteasome (20Si), and the 20Si regulator TNFα. This induction is accompanied by assembly of mature PA28-20S(i) proteasomes and elevated proteasome activity. Inhibiting accumulation of PA28α using miRNA counteracted the removal of damaged proteins demonstrating that PA28αβ has a hitherto unidentified role required for resetting the levels of protein damage at the transition from self-renewal to cell differentiation.
PMID:
23459332
PMCID:
PMC3587881
DOI:
10.1038/srep01381
[Indexed for MEDLINE]
Free PMC Article

Proteosomi 26S

Tässä hakulistassa tuli muutama kappale  proteosomiin S26  kuuluvia alayksiköitä 
PSMD10, sijainti X-kromosomissa 
PSMC1 , sijainti kr.14  
PSMA7, sijainti kr. 20 
PSMB1, sijainti kr.6 
 
Search results
Items: 10
  • Showing Current items.
Name/Gene IDDescriptionLocationAliasesMIM
ID: 5716
proteasome 26S subunit, non-ATPase 10 [Homo sapiens (human)]Chromosome X, NC_000023.11 (108084205..108091644, complement)dJ889N15.2, p28, p28(GANK)300880
ID: 5700
proteasome 26S subunit, ATPase 1 [Homo sapiens (human)]Chromosome 14, NC_000014.9 (90256550..90272625)P26S4, S4, p56602706
ID: 7157
tumor protein p53 [Homo sapiens (human)]Chromosome 17, NC_000017.11 (7668402..7687550, complement)BCC7, LFS1, P53, TRP53191170
ID: 1956
epidermal growth factor receptor [Homo sapiens (human)]Chromosome 7, NC_000007.14 (55019032..55207338)ERBB, ERBB1, HER1, NISBD2, PIG61, mENA131550
ID: 2099
estrogen receptor 1 [Homo sapiens (human)]Chromosome 6, NC_000006.12 (151654148..152103274)ER, ESR, ESRA, ESTRR, Era, NR3A1133430
ID: 7314
ubiquitin B [Homo sapiens (human)]Chromosome 17, NC_000017.11 (16380793..16382745)HEL-S-50191339
ID: 5688
proteasome subunit alpha 7 [Homo sapiens (human)]Chromosome 20, NC_000020.11 (62136727..62143458, complement)C6, HEL-S-276, HSPC, RC6-1, XAPC7606607
ID: 5689
proteasome subunit beta 1 [Homo sapiens (human)]Chromosome 6, NC_000006.12 (170535116..170553329, complement)HC5, PMSB1, PSC5602017
ID: 6233
ribosomal protein S27a [Homo sapiens (human)]Chromosome 2, NC_000002.12 (55231903..55235853)CEP80, HEL112, S27A, UBA80, UBC, UBCEP1, UBCEP80191343
ID: 7311
ubiquitin A-52 residue ribosomal protein fusion product 1 [Homo sapiens (human)]Chromosome 19, NC_000019.10 (18563766..18577460)CEP52, HUBCEP52, L40, RPL40191321

Proteosomifunktiosta. haku S20 gene

tämän päivänteesi on  muistiinpanoistani (  Malin Hernebring. protein damage control.  During embryonic stem cell differentiation. 2011)   ja kertasin sitä. Kertaus inspiroi katsomaan proteosomimodulin sijoittautumista  genomiin. Etsin ensin miten S20 sijoittuu genomiin   Tässä on  proteosomialayksikköjen  A ja B  useita geenejä ja ne ovat eri kromosomeissa. Säästän linkit ja niistä voi selata paljon lisätietoa ja geenien merkitystä  kehon puolustukselle ja  kunnon ylläpidolle.
 

Search results

Items: 11

  • Showing Current items.
Name/Gene IDDescriptionLocationAliasesMIM
ID: 7157
tumor protein p53 [Homo sapiens (human)]Chromosome 17, NC_000017.11 (7668402..7687550, complement)BCC7, LFS1, P53, TRP53191170
ID: 5693
proteasome subunit beta 5 [Homo sapiens (human)]Chromosome 14, NC_000014.9 (23016543..23035220, complement)LMPX, MB1, X600306
ID: 5688
proteasome subunit alpha 7 [Homo sapiens (human)]Chromosome 20, NC_000020.11 (62136727..62143458, complement)C6, HEL-S-276, HSPC, RC6-1, XAPC7606607
ID: 5685
proteasome subunit alpha 4 [Homo sapiens (human)]Chromosome 15, NC_000015.10 (78540405..78549220)HC9, HsT17706, PSC9176846
ID: 5689
proteasome subunit beta 1 [Homo sapiens (human)]Chromosome 6, NC_000006.12 (170535116..170553329, complement)HC5, PMSB1, PSC5602017
ID: 5695
proteasome subunit beta 7 [Homo sapiens (human)]Chromosome 9, NC_000009.12 (124353465..124415473, complement)Z604030
ID: 5700
proteasome 26S subunit, ATPase 1 [Homo sapiens (human)]Chromosome 14, NC_000014.9 (90256550..90272625)P26S4, S4, p56602706
ID: 5694
proteasome subunit beta 6 [Homo sapiens (human)]Chromosome 17, NC_000017.11 (4796144..4798503)DELTA, LMPY, Y600307
ID: 5690
proteasome subunit beta 2 [Homo sapiens (human)]Chromosome 1, NC_000001.11 (35599541..35641844, complement)HC7-I602175
ID: 5691
proteasome subunit beta 3 [Homo sapiens (human)]Chromosome 17, NC_000017.11 (38752713..38764231)HC10-II602176
ID: 5699
proteasome subunit beta 10 [Homo sapiens (human)]Chromosome 16, NC_000016.10 (67934504..67936877, complement)LMP10, MECL1, beta2i176847

lördag 20 januari 2018

Kromosomi 18

Ihmisellä on 46 kromosomia joka solusa tavallisewsti ja ne ovat 23 parina.  kromosomia 18 on  kahtena kopiona,yksi kummaltakin vanhemmalta. kromosomissa 18 on 78 miljoonaa DNA-rakennusosasta, emäsparia ja se edustaa 2.5 %:a solun kokonaisDNA:sta. Geenitieteessä ollaan aktiivisti tunnistamassa  kromosomin jokaista geeniä. lukumäärä vaihtelee , koska tiedemiehet käyttävät määrittelyssä eri menetelmioä.  Todennäköistä on , että kromosomi 18 sisältää 200-300 geeniä, jotka  koodaavat proteiineja.  Näillä proteiineilla on erilaisia  osatehtäviään kehossa.

Lähde:  https://ghr.nlm.nih.gov/chromosome/18

  • Humans normally have 46 chromosomes in each cell, divided into 23 pairs. Two copies of chromosome 18, one copy inherited from each parent, form one of the pairs. Chromosome 18 spans about 78 million DNA building blocks (base pairs) and represents approximately 2.5 percent of the total DNA in cells.
Identifying genes on each chromosome is an active area of genetic research. Because researchers use different approaches to predict the number of genes on each chromosome, the estimated number of genes varies. Chromosome 18 likely contains 200 to 300 genes that provide instructions for making proteins. These proteins perform a variety of different roles in the body.

Geneetikot käyttävät idiogrammia  kromosomien standardikuvaamiseen. idiogrammi osoittaa kromosomin suhteellisen koon ja nauhamaisen rakenteen tummia ja vaaleita juovia, joita havaitaan kun kromosomit värjätään kemiallisin liuoksin ja siten tarkastellaan mikroskoopilla. Näitä juovia  käytetään kuvaamaan joka kromosomin geenien sijainteja ja ne ovat numeroituja. 

  • Geneticists use diagrams called idiograms as a standard representation for chromosomes. Idiograms show a chromosome's relative size and its banding pattern, which is the characteristic pattern of dark and light bands that appears when a chromosome is stained with a chemical solution and then viewed under a microscope. These bands are used to describe the location of genes on each chromosome.
Chromosome with dark and light bands

T sytotoxiset solut ja kehovieras genomiaines

(Tämä strategia vaatii kyllä henkilöltä hyvää  yleiskunnon hoitoa niin että  kehon immuunipuolustuksen  resurssit eivät  huonone.  T-solujen tulisi tunnistaa vieras genomimateria, prosessoida sitä pätkä pätkältä ja saada  siten  spesifisiä  vasta-aineita   järjestelmän   vasta-aineita valmistavalta osalta).

 
Prostate. 2016 Apr;76(5):456-68. doi: 10.1002/pros.23136. Epub 2015 Dec 30.

The STEAP1(262-270) peptide encapsulated into PLGA microspheres elicits strong cytotoxic T cell immunity in HLA-A*0201 transgenic mice--A new approach to immunotherapy against prostate carcinoma.

Abstract

BACKGROUND:

PLGA microsphere-based vaccination has been proven to be effective in immunotherapy of syngeneic model tumors in mice. The critical step for the translation to humans is the identification of immunogenic tumor antigens and potent vaccine formulations to overcome immune tolerance.

METHODS:

HLA-A*0201 transgenic mice were immunized with eight different human prostate cancer peptide antigens co-encapsulated with TLR ligands into PLGA microspheres and analyzed for antigen-specific and functional cytotoxic T lymphocyte responses.

RESULTS:

Only vaccination with STEAP1(262-270) peptide encapsulated in PLGA MS could effectively crossprime CTLs in vivo. These CTLs recognized STEAP1(262-270) /HLA-A*0201 complexes on human dendritic cells and prostate cancer cell lines and specifically lysed target cells in vivo. Vaccination with PLGA microspheres was much more potent than with incomplete Freund's adjuvant.

CONCLUSIONS:

Our data suggests that there exist great differences in the immunogenicity of human PCa peptide antigens despite comparable MHC class I binding characteristics. Immunogenic STEAP1(262-270) peptide encapsulated into PLGA microspheres however was able to induce vigorous and functional antigen-specific CTLs and therefore is a promising novel approach for immunotherapy against advanced stage prostate cancer.

KEYWORDS:

PLGA microspheres; STEAP; cancer vaccine; prostate cancer; tumor antigen
PMID:
26715028
DOI:
10.1002/pros.23136

Ihmisen PACAp ja yhteys gonodotrooppisten hormonien järrjestelmään.

Front Endocrinol (Lausanne). 2017 Sep 4;8:221. doi: 10.3389/fendo.2017.00221. eCollection 2017.

Intrinsic and Regulated Gonadotropin-Releasing Hormone Receptor Gene Transcription in Mammalian Pituitary Gonadotrophs.

Abstract

The hypothalamic decapeptide gonadotropin-releasing hormone (GnRH), acting via its receptors (GnRHRs) expressed in pituitary gonadotrophs, represents a critical molecule in control of reproductive functions in all vertebrate species. GnRH-activated receptors regulate synthesis of gonadotropins in a frequency-dependent manner. The number of GnRHRs on the plasma membrane determines the responsiveness of gonadotrophs to GnRH and varies in relation to age, sex, and physiological status. This is achieved by a complex control that operates at transcriptional, translational, and posttranslational levels. This review aims to overview the mechanisms of GnRHR gene (Gnrhr) transcription in mammalian gonadotrophs.
 In general, Gnrhr exhibits basal and regulated transcription activities. Basal Gnrhr transcription appears to be an intrinsic property of native and immortalized gonadotrophs that secures the presence of a sufficient number GnRHRs to preserve their functionality independently of the status of regulated transcription.
 On the other hand, regulated transcription modulates GnRHR expression during development, reproductive cycle, and aging.
GnRH is crucial for regulated Gnrhr transcription in native gonadotrophs but is ineffective in immortalized gonadotrophs.
 In rat and mouse, both basal and GnRH-induced Gnrhr transcription rely primarily on the protein kinase C signaling pathway, with subsequent activation of mitogen-activated protein kinases.
 Continuous GnRH application, after a transient stimulation, shuts off regulated but not basal transcription, suggesting that different branches of this signaling pathway control transcription. Pituitary adenylate cyclase-activating polypeptide (PACAP) , but not activins, contributes to the regulated transcription utilizing the protein kinase A (PKA)  signaling pathway, whereas a mechanisms by which steroid hormones modulate Gnrhr transcription has not been well characterized.

KEYWORDS:

basal transcription; gonadotrophs; gonadotropin-releasing hormone; gonadotropin-releasing hormone receptor; regulated transcription

20.1. 2018 Pohdittavaksi tämä monimutkainen  feed back järjestelmä. 

Miksi haku kr 18:n osuudesta PC:ssä?

Luin  teesiä profiling os Small Intestine neuroendocrine Tumors. Asiasta väitteli Dr. Ellinor Andersson  vuonna 2014 Göteborgin Yliopistossa .
Siellä mainittiin  kr. 18:n puutoksen tai deleetion  osuudesta  monissa tuumoreissa.
Eilinen väitöstyö  PC:stä  kuvasi näitä neuroendokrinologisia soluja ja niiden mahdollista osuutta . PC = prostatacarcinoma)
Aiemin kun tein kromosomikarttaa insuliiniresistenssiin ja  diabetekseen vaikutavista geeneistä  löysin kromosomi 18:n ruutuun yhden mielenkiintoisen geenin PACAP , joka on   enrokdinologisen ylimmän säätelyn  master regulator  Nyky nimi ADCYAP1. Olin oppinut sen  tuntemaan  aika varhain 1990-luvulla ja tein muutamia karttoja. Sen nimi on  siis erilainen.  se sijaitsee kohdassa 18p11.32.  Jos nyt tuumorissa tämä kromosomi  katoaa, kaikki normaali  ylin feed backiin perustuva säätö kehon neuroendokrinologisessa  kokonaisuudessa  vaikuttuu.  Lisåksi kr. 18 näyttää sisältävän tuurmorisuppressorigeenejä.
Sen takia otin   kaikki 21  vastausta  sitaatiksi.

Tämän neuroendorkinologisen järjestelmän peptidien produktio on  aika vaativa ajatellen ihmisen ravitsemusta ja varsinkin  kelvollisten aminohappojen saatavuutta   DNA-replikointiin ja RNA transkriptioon,  translaatioihin, proteiinien  posttranslationaalisiin  hienosäätöihin jne.  Lisäksi järjestelmä ei sietäisi toksiineja. kaikki   genomin  korjaukset  vaativat myös esenteillejä ravintotekijöitä ja  energia-aineita. kaikki vaihtoehtoiset  pelissit ja  toteutatmiset  ovat huonompia alternatiiveja,  vaikka  ovat  rakennustekijöitten  puutostiloissa  vitaaliratkaisuja.Virukset tekevät myös tällaisia ratkaisuja, ne hannkivat geenejä ja  positavat geeniamteriaalia ja tuloksena on tehokkaampi viru. samoin toimi koko tuumori- ikäänkuin päämäärätietoisesti muokkaa genomiaan hyödyntäen isäntäkehoa.

Kr.18 menetys prostatatuumoreissa hakusanana

Hakusana Chromosome 18 loss in prostata tumors

Search results

Items: 1 to 20 of 21

1.
Aitchison AA, Veerakumarasivam A, Vias M, Kumar R, Hamdy FC, Neal DE, Mills IG.
Prostate. 2008 May 1;68(6):661-74. doi: 10.1002/pros.20730.
PMID:
18213629
2.
Yamamoto F, Yamamoto M.
Electrophoresis. 2007 Jun;28(12):1882-95.

Abstract

We examined differences in copy number and expression of 127 genes located on the 18q21-qter chromosomal region of the breast and prostate cancer cell lines, using the systematic multiplex PCR and reverse transcription-PCR (SM PCR and SM RT-PCR) methods that we developed. Semi-quantitative data were obtained that were comparable in quality, but not in quantity, to data from DNA microarray hybridization analysis. In the chromosomal region where losses are frequent in breast, prostate, and other cancers, we detected a homozygous deletion of the SMAD4 gene in the MDA-MB-468 breast cancer cell line. We also observed partial or entire loss of expression in genes such as CCBE1, CCDC11, CD226, NP_115536.1, NP_689683.2, RNF152, SERPINB8, and TCF4 in certain breast and/or prostate cancer cell lines. An increase in gene expression was rare, but found with the transcription factor ONECUT2 gene in all of the cancer cell lines examined. Real-time qRT-PCR experiments confirmed these SM RT-PCR results. Further analysis of clinical specimens of breast cancer by real-time qRT-PCR demonstrated that the gene expression of CCBE1, TCF4, NP_115536.1, and NP_689683.2 was downregulated in the majority of clinical cases of breast cancer.
3.
Chaudhary J, Schmidt M.
Chromosome Res. 2006;14(5):567-86. Epub 2006 Jul 12.
PMID:
16823619
4.
Gagnon A, Ripeau JS, Zvieriev V, Chevrette M.
Genes Chromosomes Cancer. 2006 Mar;45(3):220-30.
PMID:
16281261
5.
Padalecki SS, Weldon KS, Reveles XT, Buller CL, Grubbs B, Cui Y, Yin JJ, Hall DC, Hummer BT, Weissman BE, Dallas M, Guise TA, Leach RJ, Johnson-Pais TL.
Urol Oncol. 2003 Sep-Oct;21(5):366-73.

Abstract

Although prostate cancer is still the most diagnosed cancer in men, most genes implicated in its progression are yet to be identified. Chromosome abnormalities have been detected in human prostate tumors, many of them associated with prostate cancer progression. Indeed, alterations (including deletions or amplifications) of more than 15 human chromosomes have been reported in prostate cancer. We hypothesized that transferring normal human chromosomes into human prostate cancer cells would interfere with their tumorigenic and/or metastatic properties. We used microcell-mediated chromosome transfer to introduce human chromosomes 10, 12, 17, and 18 into highly tumorigenic (PC-3M-Pro4) and highly metastatic (PC-3M-LN4) PC-3-derived cell lines. We tested the in vitro and in vivo properties of these hybrids. Introducing chromosome 18 into the PC-3M-LN4 prostate cancer cell line greatly reduced its tumorigenic phenotype. We observed retarded growth in soft agar, decreased invasiveness through Matrigel, and delayed tumor growth into nude mice, both subcutaneously and orthotopically. This phenotype is associated with a marker in the 18q21 region. Combined with the loss of human chromosome 18 regions often seen in patients with advanced prostate cancer, our results show that chromosome 18 encodes one or more tumor-suppressor genes whose inactivation contributes to prostate cancer progression.
6.
Yin Z, Babaian RJ, Troncoso P, Strom SS, Spitz MR, Caudell JJ, Stein JD, Kagan J.
Oncogene. 2001 Apr 26;20(18):2273-80.
7.
Fu W, Bubendorf L, Willi N, Moch H, Mihatsch MJ, Sauter G, Gasser TC.
Urology. 2000 Nov 1;56(5):880-5.

Abstract

OBJECTIVES:

The genetic basis underlying prostate cancer development and progression is poorly understood. The primary aim of this study was to identify chromosomal regions important for progression in clinically localized prostate cancer removed by radical prostatectomy.

METHODS:

Comparative genomic hybridization was used for whole genome screening of DNA sequence copy number alterations in 28 pathologically organ-confined tumors (pT2) and 28 tumors with infiltration of the seminal vesicles (pT3b).

RESULTS:

Comparative genomic hybridization analysis showed on average 2.0 +/- 2.4 chromosomal alterations per tumor with more frequent losses (mean 1.3 +/- 1.8) than gains (mean 0.7 +/- 1.0). The percentage of tumors without alterations was higher in Stage pT2 (21%) than in Stage pT3b (50%). Losses of 8p (21%), 13q (21%), 5q (14%), 16q (14%), and 18q (13%) and gains of Xq (21%) and 8q (9%) were the most prevalent changes. Distinct regional alterations included minimal overlapping regions of loss at 5q13-q21, 6q14-q21, and 18q21-qter. There was only a small increase in the number of alterations from Stage pT2 to Stage pT3b (mean 1.6 +/- 2.3 versus 2.5 +/- 2.4). However, two individual alterations-gain of 8q and loss of 18q-were significantly more frequent in Stage pT3b than in Stage pT2 prostate cancer (P = 0.02 and P = 0.04, respectively), suggesting that genes in these regions may be important for prostate cancer progression.

CONCLUSIONS:

The detection of chromosome 8q gains and 18q losses and the identification of the corresponding target genes could become a molecular tool for better characterization of clinically localized prostate cancer.
8.
Padalecki SS, Troyer DA, Hansen MF, Saric T, Schneider BG, O'Connell P, Leach RJ.
Int J Cancer. 2000 Mar 1;85(5):654-8.

Abstract

Like most cancers, prostate cancer (CaP) is believed to be the result of the accumulation of genetic alterations within cells. Previous studies have implicated numerous chromosomal regions with elevated rates of allelic imbalance (AI), using mostly primary CaPs with an unknown disease outcome. These regions of AI are proposed sites for tumor suppressor genes. One of the regions previously implicated as coding for at least one tumor suppressor gene is the long arm of chromosome 18 (18q). To confirm this observation, as well as to narrow the critical region for this putative tumor suppressor, we analyzed 32 metastatic CaP specimens for AI on chromosome 18q. Thirty-one of these 32 specimens (96.8%) exhibited AI at one or more loci on chromosome 18q. Our analysis using 17 polymorphic markers revealed statistically significant AI on chromosome 18q at 3 markers, D18S35, D18S64 and D18S461. Using these markers as a guide, we have been able to identify 2 distinct minimum regions of AI on 18q. The first region is between the genetic markers D18S1119 and D18S64. The second region lies more distal on the long arm of the chromosome and is between the genetic markers D18S848 and D18S58. To determine if 18q loss is a late event in the progression of CaP, we also examined prostatic intraepithelial neoplasia (PIN) and primary prostate tumors from 17 patients for AI with a subset of 18q markers. We found significantly higher AI in the metastatic samples. Our results are consistent with 18q losses occurring late in CaP progression.
Free Article
9.
Latil A, Pesche S, Valéri A, Fournier G, Cussenot O, Lidereau R.
Prostate. 1999 Sep 1;40(4):225-31.

Abstract

BACKGROUND:

Loss of heterozygosity (LOH) on chromosome arm 18q is common in sporadic prostate cancer and may be involved in cancer development through inactivation of tumor-suppressor genes (TSG). Recent identification, at 18q21.1, of MADR2/Smad2, a key component in transforming growth factor beta (TGFbeta)-family signaling pathways, led us to investigate the role of this gene in prostate tumorigenesis.

METHODS:

Sporadic primary prostate tumors from 25 patients with clinically localized tumors and 7 with metastatic forms were examined for MADR2/Smad2 mutations by using polymerase chain reaction-single-strand conformational polymorphism (PCR-SSCP) analysis of cDNA, and for gene expression by quantitative reverse transcription-polymerase chain reaction (RT-PCR).

RESULTS:

We detected no mutation in MADR2/Smad2 and no abnormal mRNA expression.

CONCLUSIONS:

Despite recent evidence indicating that MADR2/Smad2 acts as a tumor-suppressor gene, our findings suggest a limited role of this gene in prostate tumorigenesis, at least in the early stages. Another key tumor-suppressor gene may therefore be the main target of the observed LOH at 18q21.1.
11.
Ueda T, Komiya A, Emi M, Suzuki H, Shiraishi T, Yatani R, Masai M, Yasuda K, Ito H.
Genes Chromosomes Cancer. 1997 Oct;20(2):140-7.

Abstract

We analyzed normal/tumor DNA pairs obtained from 46 patients with prostate cancers (stage B, 16 cases; C, 10 cases; D1, 4 cases; and endocrine therapy-resistant cancer-death, 16 cases) for loss of heterozygosity using 32 microsatellite markers on chromosome 18. Seventeen of the 46 cases (37%) showed loss of heterozygosity (LOH) for at least one locus on the long arm. Detailed deletion mapping in these tumors identified a distinct commonly deleted region within a 5-cM interval in 18q21.1. There was a statistical correlation between the frequency of LOH on 18q and clinical stage (chi 2 = 12.3; P = 0.0064). LOH on 18q was observed more frequently in Stage D1 cases (4/4; 100%) than in stage B+C cases (5/26; 19%; P = 0.0046, Fisher's exact test). In 8 of 9 (89%) cancer-death patients from whom DNAs were available from both primary and metastatic tumors, the primary tumors had either no detectable abnormality of chromosome 18 or the region involving loss of heterozygosity was limited while the metastatic foci showed more frequent and extended allelic losses on this chromosome. No abnormalities were detected in the DCC and DPC4 genes when their exons were analyzed separately by single strand conformation polymorphism assay. These results suggest that inactivation of one or more putative tumor suppressor genes on 18q21 other than DCC and DPC4 plays an important role in the progression of human prostate cancer.
PMID:
9331564
[Indexed for MEDLINE]
12.
MacGrogan D, Pegram M, Slamon D, Bookstein R.
Oncogene. 1997 Aug 28;15(9):1111-4.

Abstract

Allelic deletions of chromosome 18q are reported to be common in prostate and colorectal cancers, suggesting that one or more tumor suppressor genes on 18q are involved in the genesis of these neoplasms. The DPC4 gene, a recently identified candidate tumor suppressor in 18q21, was examined for evidence of inactivation in prostatic carcinomas, and results compared to those of a parallel analysis of colorectal carcinomas, for which DPC4 mutation has been reported in approximately 10% of cases. In this study, only three (10%) of 29 informative primary prostate cancers showed allelic loss of chromosome 18q21 markers, and no point mutations or deletions of DPC4 were detected in the complete set of 45 primary or metastatic cases. In contrast, five (56%) of nine primary colorectal tumors displayed allelic loss of 18q markers and in one of these a somatically acquired G-->T missense mutation was found in exon 1. Of twelve colorectal tumor cell lines, one showed a G-->C missense mutation in exon 8 and two had partial homozygous deletions that would likely abrogate gene function. These data suggest that DPC4 is rarely if ever mutated during prostatic oncogenesis, whereas inactivation of this gene may contribute to the genesis of a subset of colorectal carcinomas.
Free Article
13.
Crundwell MC, Chughtai S, Knowles M, Takle L, Luscombe M, Neoptolemos JP, Morton DG, Phillips SM.
Int J Cancer. 1996 Aug 22;69(4):295-300.

Abstract

Previous studies have suggested the involvement of tumour-suppressor genes on chromosomes 8p, 22q and 18q (DCC) in prostate cancer. The aim of this study was to further characterize these regions. We investigated 20 polymorphic regions on the 3 chromosome arms in 43 cancers and 10 cases of benign prostatic hyperplasia (BPH). Allelic loss was observed in 72% of cancers on 8p, 16% on 22q and 24% at DCC. For BPH, loss was observed in 20% on 8p and in 12% at DCC. The low incidence of LOH on 22q implies that this locus has no significant role in prostate carcinogenesis. At DCC, although the overall incidence was low, tumours with LOH were mostly of high grade or had metastases, suggesting a role for this gene in prostate cancer progression. On chromosome 8p, 29% of cancers had deletions at the LPL locus on 8p22 and 60% had deletions within a region flanked by the markers D8S339 and ANKI on 8p 11.1-p21.1. Within this region, 2 distinct areas of allelic loss were observed, at one or both ANKI and D8S255, and in the region defined by the markers D8S259-D8S505. For the regions 8p22 and ANKI-D8S255, tumours with metastases had a greater frequency of LOH compared to non-metastasizing tumours, suggesting the presence of putative metastasis-suppressor genes in these regions.
14.
König JJ, Teubel W, Romijn JC, Schröder FH, Hagemeijer A.
Hum Pathol. 1996 Jul;27(7):720-7.
PMID:
8698318
15.
Latil A, Baron JC, Cussenot O, Fournier G, Soussi T, Boccon-Gibod L, Le Duc A, Rouëssé J, Lidereau R.
Bull Cancer. 1995 Jul;82(7):589-97. French.
Prostate cancer is one of the most common malignancies in men. Few authors have attempted to identify consistent genetic alterations at the molecular level in adenocarcinoma of the prostate, but those most frequently reported are loss of heterozygosity (LOH) involving chromosome arms 8p, 10q, 16q, and 18q and inactivation of the TP53 tumor suppressor gene. In order to determine if alterations frequently found in other adenocarcinomas (breast, ovarian, colorectal), including losses of genetic material from chromosome arms 1p, 3p, 7q, 8p, 11p, 17p, 17q, and 18q, are also involved in prostate cancer, we examined 20 localized early-stage prostate tumors. We detected no mutations of the TP53 gene. Allelic losses were found from 7q (33%), 8p (50%), 10q (20%), and 18q (33%). Furthermore, as the first step toward isolating tumor suppressor genes on 18q, we used six polymorphic markers and identified a small common deleted region between the chromosome 18 centromere and the D18S19 locus.
16.
König JJ, Teubel W, van Dongen JW, Romijn JC, Hagemeijer A, Schröder FH.
Prostate. 1994 Dec;25(6):281-91.
The DCC tumor suppressor gene has been shown to be frequently deleted or its expression reduced or absent in colorectal, gastro-intestinal, pancreatic, prostatic, and breast carcinomas, and glioblastomas. By allelotype analysis using the DCC-flanking polymorphic marker D18S5 we have previously shown that allelic deletions at 18q21 occur in 40% of male germ cell tumors (Murty et al., 1994). In order to further understand the role of DCC gene in germ cell tumorigenesis, we evaluated deletions by loss of heterozygosity (LOH) and mRNA expression by RT-PCR in tumor tissues and cell lines. Analysis of 61 paired normal-tumor DNAs using the probes D18S5, JOSH 4.4 (a polymorphism within the DCC locus) and a (CA)n polymorphism in an intron of DCC revealed that 45% of GCTs had allelic deletions. In addition, two homozygous deletions were found in the DCC gene among 91 (61 used in the LOH analysis and an additional 30) tumor DNAs when screened with the cDNA probes (pDCC 1.65, pDCC 1.9 and pDCC 1.0). By RT-PCR analysis of four normal testes, nine GCT cell lines and 14 tumor tissues, DCC gene expression was detected in all four normal testes, while four (45%) GCT cell lines and one (7%) tumor specimen showed lack of expression. In addition, DCC expression was highly reduced in three (21%) tumor tissues. The high frequency of LOH at 18q21 was characteristic of seminomas as well as all subsets of non-seminomas in primary as well as metastatic states. Frequent allelic loss in all histologic subsets, homozygous deletions, and loss of expression of DCC suggest that suppression of this gene's function is an early event in GCT development.
17.
Murty VV, Li RG, Houldsworth J, Bronson DL, Reuter VE, Bosl GJ, Chaganti RS.
Oncogene. 1994 Nov;9(11):3227-31.

Abstract

The DCC tumor suppressor gene has been shown to be frequently deleted or its expression reduced or absent in colorectal, gastro-intestinal, pancreatic, prostatic, and breast carcinomas, and glioblastomas. By allelotype analysis using the DCC-flanking polymorphic marker D18S5 we have previously shown that allelic deletions at 18q21 occur in 40% of male germ cell tumors (Murty et al., 1994). In order to further understand the role of DCC gene in germ cell tumorigenesis, we evaluated deletions by loss of heterozygosity (LOH) and mRNA expression by RT-PCR in tumor tissues and cell lines. Analysis of 61 paired normal-tumor DNAs using the probes D18S5, JOSH 4.4 (a polymorphism within the DCC locus) and a (CA)n polymorphism in an intron of DCC revealed that 45% of GCTs had allelic deletions. In addition, two homozygous deletions were found in the DCC gene among 91 (61 used in the LOH analysis and an additional 30) tumor DNAs when screened with the cDNA probes (pDCC 1.65, pDCC 1.9 and pDCC 1.0). By RT-PCR analysis of four normal testes, nine GCT cell lines and 14 tumor tissues, DCC gene expression was detected in all four normal testes, while four (45%) GCT cell lines and one (7%) tumor specimen showed lack of expression. In addition, DCC expression was highly reduced in three (21%) tumor tissues. The high frequency of LOH at 18q21 was characteristic of seminomas as well as all subsets of non-seminomas in primary as well as metastatic states. Frequent allelic loss in all histologic subsets, homozygous deletions, and loss of expression of DCC suggest that suppression of this gene's function is an early event in GCT development.
18.
Massenkeil G, Oberhuber H, Hailemariam S, Sulser T, Diener PA, Bannwart F, Schäfer R, Schwarte-Waldhoff I.
Anticancer Res. 1994 Nov-Dec;14(6B):2785-90.
We analysed 39 prostatic carcinomas for loss of heterozygosity on chromosomal arms 8p, 10q, 16q, 17p and 18q and for mutations in the p53 anti-oncogene. Loss of heterozygosity (LOH) on 8p was detected in one out of 5 informative tumors, LOH on 16q in 3 out of 21 tumors, LOH on 17p in 2 out of 18 tumors, and LOH on 18q in 2 out of 17 tumors. No deletions were observed on 10q in 14 informative tumors. p53 alterations occurred in 3 out of 38 examined tumors, comprising two point mutations and a small deletion. Chromosomal deletions and p53 mutations were confined to locally invasive prostatic carcinomas, suggesting that they are associated with the progression of some prostate cancers rather than with tumor initiation.
19.
Latil A, Baron JC, Cussenot O, Fournier G, Soussi T, Boccon-Gibod L, Le Duc A, Rouëssé J, Lidereau R.
Genes Chromosomes Cancer. 1994 Oct;11(2):119-25.
PMID:
7529548
20.
Brewster SF, Browne S, Brown KW.
J Urol. 1994 Apr;151(4):1073-7.We present a restriction fragment length polymorphism (RFLP) analysis of 29 benign and 30 malignant prostatic tumors, using polymorphic DNA probes to the putative tumor suppressor genes DCC (Deleted in Colorectal Carcinoma; chromosome 18q21.3), nm23-H1 (17q21.3), APC (Adenomatous Polyposis Coli; 5q21) and p53 (17p13). Six of 23 evaluable cancers (26%) showed loss of heterozygosity (LOH) at DCC; 5 were advanced stage and one was clinically localized (p < 0.05). Mapping 18q deletions, another (advanced) cancer showed LOH at a locus distal to DCC (18q22), but no LOH at DCC. Three of 15 evaluable cancers (20%), all advanced, showed LOH at APC. Three of eight (38%) cancers, of which 2 were advanced, showed LOH at p53. One high grade/stage cancer of 21 (5%) showed LOH at nm23-H1 (and also at DCC). Combining data, allelic losses at either DCC, APC, or p53 genes were seen in 13% of localized cancers, but in 71% of advanced cancers (p < 0.002). Allelic loss involving nm23-H1 is rare in prostatic carcinoma. We suggest that loss of tumor suppressor genes DCC and/or an unidentified gene located distally on chromosome 18q, APC, or p53 may influence progression in prostatic carcinoma.

fredag 19 januari 2018

Midkine sytokiinin rakenne ja isoformien hsitoriaa

  Kuuntelin Midkine-proteiinista väitöskirjan tänään 19.1. 2018 ( Anna Nordin  väittelevä tutkija,  vastaväittäjä Oslon Yliopistosta professori Kristin Austlid Tasken. ISBN: 978-91-629--0374-9.

Etsin PubMed hakulaiteella midkine-proteiinin aminohapporakenteen ja geenisijainnin.

midkine isoform a precursor [Homo sapiens]

NCBI Reference Sequence: NP_001012333.1

LOCUS       NP_001012333             143 aa            linear   PRI 03-OCT-2017
DEFINITION  midkine isoform a precursor [Homo sapiens].
ACCESSION   NP_001012333
VERSION     NP_001012333.1
DBSOURCE    REFSEQ: accession NM_001012333.2
KEYWORDS    RefSeq.
SOURCE      Homo sapiens (human)
  ORGANISM  Homo sapiens
            Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
            Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
            Catarrhini; Hominidae; Homo.
REFERENCE   1  (residues 1 to 143)
  AUTHORS   Muramatsu T.
  TITLE     Midkine, a heparin-binding cytokine with multiple roles in
            development, repair and diseases
  JOURNAL   Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 86 (4), 410-425 (2010)
   PUBMED   20431264
  REMARK    Review article
REFERENCE   2  (residues 1 to 143)
  AUTHORS   Tao P, Xu D, Lin S, Ouyang GL, Chang Y, Chen Q, Yuan Y, Zhuo X, Luo
            Q, Li J, Li B, Ruan L, Li Q and Li Z.
  TITLE     Abnormal expression, highly efficient detection and novel
            truncations of midkine in human tumors, cancers and cell lines
  JOURNAL   Cancer Lett. 253 (1), 60-67 (2007)
   PUBMED   17379400
REFERENCE   3  (residues 1 to 143)
  AUTHORS   Iwasaki W, Nagata K, Hatanaka H, Inui T, Kimura T, Muramatsu T,
            Yoshida K, Tasumi M and Inagaki F.
  TITLE     Solution structure of midkine, a new heparin-binding growth factor
  JOURNAL   EMBO J. 16 (23), 6936-6946 (1997)
   PUBMED   9384573
REFERENCE   4  (residues 1 to 143)
  AUTHORS   Novotny WF, Maffi T, Mehta RL and Milner PG.
  TITLE     Identification of novel heparin-releasable proteins, as well as the
            cytokines midkine and pleiotrophin, in human postheparin plasma
  JOURNAL   Arterioscler. Thromb. 13 (12), 1798-1805 (1993)
   PUBMED   8241100
REFERENCE   5  (residues 1 to 143)
  AUTHORS   Kaname T, Kuwano A, Murano I, Uehara K, Muramatsu T and Kajii T.
  TITLE     Midkine gene (MDK), a gene for prenatal differentiation and
            neuroregulation, maps to band 11p11.2 by fluorescence in situ
            hybridization
  JOURNAL   Genomics 17 (2), 514-515 (1993)
   PUBMED   8406506
REFERENCE   6  (residues 1 to 143)
  AUTHORS   Fairhurst JL, Kretschmer PJ, Kovacs E, Bohlen P and Kovesdi I.
  TITLE     Structure of the gene coding for the human retinoic acid-inducible
            factor, MK
  JOURNAL   DNA Cell Biol. 12 (2), 139-147 (1993)
   PUBMED   8471163
REFERENCE   7  (residues 1 to 143)
  AUTHORS   Uehara K, Matsubara S, Kadomatsu K, Tsutsui J and Muramatsu T.
  TITLE     Genomic structure of human midkine (MK), a retinoic acid-responsive
            growth/differentiation factor
  JOURNAL   J. Biochem. 111 (5), 563-567 (1992)
   PUBMED   1639750
REFERENCE   8  (residues 1 to 143)
  AUTHORS   Shoyab M, McDonald VL, Dick K, Modrell B, Malik N and Plowman GD.
  TITLE     Amphiregulin-associated protein: complete amino acid sequence of a
            protein produced by the
            12-0-tetradecanoylphorbol-13-acetate-treated human breast
            adenocarcinoma cell line MCF-7
  JOURNAL   Biochem. Biophys. Res. Commun. 179 (1), 572-578 (1991)
   PUBMED   1883381
REFERENCE   9  (residues 1 to 143)
  AUTHORS   Tsutsui J, Uehara K, Kadomatsu K, Matsubara S and Muramatsu T.
  TITLE     A new family of heparin-binding factors: strong conservation of
            midkine (MK) sequences between the human and the mouse
  JOURNAL   Biochem. Biophys. Res. Commun. 176 (2), 792-797 (1991)
   PUBMED   2025291
REFERENCE   10 (residues 1 to 143)
  AUTHORS   Kretschmer PJ, Fairhurst JL, Decker MM, Chan CP, Gluzman Y, Bohlen
            P and Kovesdi I.
  TITLE     Cloning, characterization and developmental regulation of two
            members of a novel human gene family of neurite outgrowth-promoting
            proteins
  JOURNAL   Growth Factors 5 (2), 99-114 (1991)
   PUBMED   1768439
COMMENT     REVIEWED REFSEQ: This record has been curated by NCBI staff. The
            reference sequence was derived from BI915189.1, BM016739.1,
            BC011704.2 and AI494596.1.
            
            Summary: This gene encodes a member of a small family of secreted
            growth factors that binds heparin and responds to retinoic acid.
            The encoded protein promotes cell growth, migration, and
            angiogenesis, in particular during tumorigenesis. This gene has
            been targeted as a therapeutic for a variety of different
            disorders. Alternatively spliced transcript variants encoding
            multiple isoforms have been observed. [provided by RefSeq, Jul
            2012].
            
            Transcript Variant: This variant (2) differs in the 5' UTR,
            compared to variant 1. Variants 1, 2, 3, 4, and 5 encode the same
            isoform (a).
            
            Publication Note:  This RefSeq record includes a subset of the
            publications that are available for this gene. Please see the Gene
            record to access additional publications.
            
            ##Evidence-Data-START##
            Transcript exon combination :: CN266447.1, BM016739.1 [ECO:0000332]
            RNAseq introns              :: single sample supports all introns
                                           SAMEA1968189, SAMEA1968540
                                           [ECO:0000348]
            ##Evidence-Data-END##
FEATURES             Location/Qualifiers
     source          1..143
                     /organism="Homo sapiens"
                     /db_xref="taxon:9606"
                     /chromosome="11"
                     /map="11p11.2"
     Protein         1..143
                     /product="midkine isoform a precursor"
                     /note="amphiregulin-associated protein; midgestation and
                     kidney protein; neurite outgrowth-promoting factor 2;
                     retinoic acid inducible factor; neurite growth-promoting
                     factor 2"
                     /calculated_mol_wt=13421
     sig_peptide     1..20
                     /experiment="experimental evidence, no additional details
                     recorded"
                     /note="{ECO:0000269|PubMed:15340161,
                     ECO:0000269|PubMed:1883381, ECO:0000269|PubMed:8241100};
                     propagated from UniProtKB/Swiss-Prot (P21741.1)"
                     /calculated_mol_wt=2183
     mat_peptide     21..143
                     /product="Midkine"
                     /experiment="experimental evidence, no additional details
                     recorded"
                     /note="propagated from UniProtKB/Swiss-Prot (P21741.1)"
                     /calculated_mol_wt=13421
     Region          37..116
                     /region_name="PTN"
                     /note="Pleiotrophin / midkine family; smart00193"
                     /db_xref="CDD:128490"
     CDS             1..143
                     /gene="MDK"
                     /gene_synonym="ARAP; MK; NEGF2"
                     /coded_by="NM_001012333.2:177..608"
                     /note="isoform a precursor is encoded by transcript
                     variant 2"
                     /db_xref="CCDS:CCDS7919.1"
                     /db_xref="GeneID:4192"
                     /db_xref="HGNC:HGNC:6972"
                     /db_xref="MIM:162096"
ORIGIN      
        1 mqhrgflllt llallaltsa vakkkdkvkk ggpgsecaew awgpctpssk dcgvgfregt
       61 cgaqtqrirc rvpcnwkkef gadckykfen wgacdggtgt kvrqgtlkka rynaqcqeti
      121 rvtkpctpkt kakakakkgk gkd
//