https://www.genenames.org/data/genegroup/#!/group/28
SCAN ja Krabb sekä SCAN domeeneja sisältäviä geenejä havaitsin yli 50. Näillä geeneillä oli ryhmänimiä ZNF-luettelossa jossa saattoi olla jo numero 990 olemassa.
ZFP- ryhmnimiä ilmeni myös ja numerot olivat useita kymmeniä, .
ZSCAN -numeroita havaitsin ainakin 54.ään asti
ZKSCAN numeroita ilmeni 24:ään asti.
Sinkkisormiproteiinit ilmenivät klustereina.
Tässä tarkkasin tuon myeloisen sinkkisormiproteiini MZF1:n geenin sijaintikohtaa 19q13.43 ja huomasin että hyvin usea ZSCAN ja ZKSCANgeeni lokalisoitui siihen kohtaan ja niiden lisäksi hyvin moni ZNF- proteiini, jolla ei ollut Krab tai SCAN domeenia.
SNAIL ja SLUG kuuluvat tähän Zf- C2H2 ryhmään.
2.11. 2019:
Lisäys, SCAn, KRABB domeeneihin lisätään myös POZ-(BTB) eräissä C2H2- sinkkisormiproteiineja kuvaavassa artikkelissa.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC86980/
Näistä tarkemmin Kelch superperhettä koskevissa muistiinpaoissa.
BTB/POZ- domaaneja on KLHL ja KBTBD- alaperheissä Kelch-superperheen perheen proteiineilla
Leta i den här bloggen
fredag 6 september 2019
torsdag 5 september 2019
MZF1 (19q13.43), ZNF42. ZSCAN6, SCAN domainin (leusiinipitoinen) sisältävä C2H2-tyyppinen Zf
http://ar.iiarjournals.org/search?fulltext=myeloid+zinc+finger+1+(MZF1)&sortspec=date&submit=Submit&andorexactfulltext=phrase
Mihin sinkkisormiproteiiniryhmään tämä kuuluu? MZF1
HAKU 5.9. 2019
Geeni MZF1 (19q13.43)
https://www.ncbi.nlm.nih.gov/gene/7593
Mihin sinkkisormiproteiiniryhmään tämä kuuluu? MZF1
Experimental Studies
...Myeloid Zinc Finger 1 (MZF1)
Maintains the Mesenchymal Phenotype by Down-regulating IGF1R/p38
MAPK/ER Signaling Pathway in High-level MZF1-expressing
TNBC cells CHIA-HERNG YUE1,2,
JER-YUH LIU3,4, CHING-SHIANG CHI5, CHING-WEN HU6, KOK-TONG TAN1, FU-MEI
HUANG7, YING-RU PAN8,
KUN-I LIN9,10 and CHIA ...
Geeni MZF1 (19q13.43)
https://www.ncbi.nlm.nih.gov/gene/7593
- Also known as
- MZF-1; MZF1B; ZFP98; ZNF42; ZSCAN6
- Expression
- Ubiquitous expression in spleen (RPKM 4.6), prostate (RPKM 4.2) and 25 other tissues See more
- Orthologs
- Preferred Names
- myeloid zinc finger 1
- Names
- zinc finger and SCAN domain-containing protein 6
- zinc finger protein 42 (myeloid-specific retinoic acid-responsive)
- NM_003422.2 → NP_003413.2 myeloid zinc finger 1 isoform 1
- onserved Domains (4) summary
-
- smart00431
Location:40 → 152 - SCAN; leucine rich region
SCAN domainThe SCAN domain (named after SRE-ZBP, CTfin51, AW-1 and Number 18 cDNA) is found in several pfam00096 proteins. The domain has been shown to be able to mediate homo- and hetero-oligomerization.
- Isolation and characterization of a novel zinc-finger protein with transcription repressor activity.J. Biol. Chem. 1995 Sep 22; 270(38):22143-52
- The zinc finger-associated SCAN box is a conserved oligomerization domain.Mol. Cell. Biol. 1999 Dec ; 19(12):8526-35Abstract
A number of Cys(2)His(2) zinc finger proteins contain a highly conserved amino-terminal motif termed the SCAN domain. This element is an 80-residue, leucine-rich region that contains three segments strongly predicted to be alpha-helices. In this report, we show that the SCAN motif functions as an oligomerization domain mediating self-association or association with other proteins bearing SCAN domains. These findings suggest that the SCAN domain plays an important role in the assembly and function of this newly defined subclass of transcriptional regulators.
- COG5048
Location:358 → 716 - COG5048; FOG: Zn-finger [General function prediction only]
- sd00017
Location:543 → 563 - ZF_C2H2; C2H2 Zn finger [structural motif]
- sd00019
Location:442 → 462 - ZF_C2H2; C2H2 Zn finger [structural motif]
- smart00431
ZCW, CW- tyyppiset sinkkisormiprotiinit
https://www.genenames.org/data/genegroup/#!/group/96
Gene: ZCWPW1,UniProt: Q9H0M4648 amino acids
Gene: ZCWPW1,UniProt: Q9H0M4648 amino acids
Genes contained within the group: 7
HGNC ID (gene)
|
Approved symbol
|
Approved name
|
Previous symbols
|
Synonyms
|
Chromosome
|
---|---|---|---|---|---|
HGNC:23486 | ZCWPW1 |
zinc finger CW-type and PWWP domain containing 1
|
FLJ10057,DKFZp434N0510,ZCW1
|
7q22.1 | |
HGNC:23574 | ZCWPW2 |
zinc finger CW-type and PWWP domain containing 2
|
ZCW2
|
3p24.1 | |
HGNC:23573 | MORC2 |
MORC family CW-type zinc finger 2
|
ZCWCC1
|
ZCW3,KIAA0852,AC004542.C22.1
|
22q12.2 |
HGNC:23485 | MORC4 |
MORC family CW-type zinc finger 4
|
ZCWCC2
|
ZCW4,FLJ11565
|
Xq22.3 |
HGNC:23572 | MORC3 |
MORC family CW-type zinc finger 3
|
ZCWCC3
|
ZCW5,NXP2,KIAA0136
|
21q22.12 |
HGNC:7198 | MORC1 |
MORC family CW-type zinc finger 1
|
MORC
|
ZCW6,CT33
|
3q13.13 |
HGNC:21577 | KDM1B |
lysine demethylase 1B
|
C6orf193,AOF1
|
FLJ34109,FLJ33898,dJ298J15.2,bA204B7.3,FLJ43328,LSD2
|
ZCCHC, zf-CCHC, "zinc knuckled contgaining2 ( 24 geeniä)
Gene group: Zinc fingers CCHC-type (ZCCHC)
Also known as : "zf-CCHC", "zinc knuckle containing"
Genes contained within the group: 24
HGNC ID (gene)
|
Approved symbol
|
Approved name
|
Previous symbols
|
Synonyms
|
Chromosome
|
---|---|---|---|---|---|
HGNC:15986 | LIN28A |
lin-28 homolog A
|
LIN28
|
LIN-28,FLJ12457,ZCCHC1,CSDD1
|
1p36.11 |
HGNC:22916 | ZCCHC2 |
zinc finger CCHC-type containing 2
|
C18orf49
|
FLJ20281,KIAA1744,FLJ20222
|
18q21.33 |
HGNC:16230 | ZCCHC3 |
zinc finger CCHC-type containing 3
|
C20orf99
|
dJ1103G7.7
|
20p13 |
HGNC:22917 | ZCCHC4 |
zinc finger CCHC-type containing 4
|
HSPC052,FLJ23024,ZGRF4
|
4p15.2 | |
HGNC:22997 | RTL3 |
retrotransposon Gag like 3
|
ZCCHC5
|
FLJ38865,Mar3,Mart3,ZHC5,SIRH9
|
Xq21.1 |
HGNC:25817 | TUT7 |
terminal uridylyl transferase 7
|
ZCCHC6
|
KIAA1711,FLJ13409,PAPD6,TENT3B
|
9q21.33 |
HGNC:26209 | ZCCHC7 |
zinc finger CCHC-type containing 7
|
FLJ22611,AIR1
|
9p13.2 | |
HGNC:25265 | ZCCHC8 |
zinc finger CCHC-type containing 8
|
DKFZp434E2220
|
12q24.31 | |
HGNC:25424 | ZCCHC9 |
zinc finger CCHC-type containing 9
|
DKFZp761J139,PPP1R41
|
5q14.1 | |
HGNC:25954 | ZCCHC10 |
zinc finger CCHC-type containing 10
|
FLJ20094
|
5q31.1 | |
HGNC:28981 | TUT4 |
terminal uridylyl transferase 4
|
ZCCHC11
|
KIAA0191,PAPD3,TENT3A
|
1p32.3 |
HGNC:27273 | ZCCHC12 |
zinc finger CCHC-type containing 12
|
FLJ16123,SIZN,SIZN1,PNMA7A
|
Xq24 | |
HGNC:31749 | ZCCHC13 |
zinc finger CCHC-type containing 13
|
4930513O09RIK,Cnbp2,ZNF9L
|
Xq13.2 | |
HGNC:24134 | ZCCHC14 |
zinc finger CCHC-type containing 14
|
BDG29,MGC14139
|
16q24.2 | |
HGNC:28842 | RBM4B |
RNA binding motif protein 4B
|
RBM30
|
MGC10871,ZCCHC15,RBM4L,ZCRB3B,ZCCHC21B
|
11q13 |
HGNC:25214 | RTL4 |
retrotransposon Gag like 4
|
ZCCHC16
|
Mart4,Mar4,FLJ46608,SIRH11
|
Xq23 |
HGNC:30246 | ZCCHC17 |
zinc finger CCHC-type containing 17
|
PS1D,HSPC251,pNO40
|
1p35.2 | |
HGNC:32459 | ZCCHC18 |
zinc finger CCHC-type containing 18
|
SIZN2,PNMA7B
|
Xq22.2 | |
HGNC:29620 | ZCRB1 |
zinc finger CCHC-type and RNA binding motif containing 1
|
MADP-1,MADP1,RBM36,ZCCHC19,SNRNP31
|
12q12 | |
HGNC:10789 | SRSF7 |
serine and arginine rich splicing factor 7
|
SFRS7
|
9G8,ZCRB2,HSSG1,AAG3,RBM37,ZCCHC20
|
2p22.1 |
HGNC:9901 | RBM4 |
RNA binding motif protein 4
|
LARK,RBM4A,ZCRB3A,ZCCHC21
|
11q13.2 | |
HGNC:13164 | CNBP |
CCHC-type zinc finger nucleic acid binding protein
|
DM2,ZNF9
|
RNF163,ZCCHC22,CNBP1
|
3q21.3 |
HGNC:26911 | ZCCHC24 |
zinc finger CCHC-type containing 24
|
C10orf56
|
FLJ90798,Z3CXXC8
|
10q22.3 |
HGNC:12950 | SF1 |
splicing factor 1
|
ZNF162
|
ZFM1,ZCCHC25
|
11q13.1 |
ZC3H sinkkisormiproteiini, CCCH tyyppiset sinkkisormiproteiinit , 38 geeniä
https://www.genenames.org/data/genegroup/#!/group/73
Mielenkiintoinen ryhmä. 38 geeniä. Eräs lähde sanoo: 35 geeni ja niistä 2 transkriptiotekijää. Linkistä sa nimet, synoyymit ja geenin sijainnin kromosomissa.
Näistä mainittiin ZFP36 seuraavassa yhteydessä:
Muita nimiä: RNF162A, EGF response factor 1, NUP475,TIS11, Zfp-36, GOS24, RNA decay activator protein.
( Kun Nobelin palkinto tnä vuonna tuli hypoxian ja normoxian homeostaasia käsittelevästä asiasta, huomasin että usea sinkkiproteiinikin on tässä säätelyssä mukana.
Myös tästä sikkisormirakenteen C3H- omaavasta ryhmästä mainitaan tekijää).
Abstraktista sitaatti:
"Mammalian gene expression patterns change profoundly in response to low oxygen levels (HYPOXIA). These changes in gene expression programs are strongly influenced by post-transcriptional mechanisms mediated by mRNA-binding factors: RNA-binding proteins (RBPs) and microRNAs (miRNAs).
Here, we review the RBPs and miRNAs that modulate mRNA turnover and translation in response to hypoxic challenge.
RBPs such as HuR (human antigen R), PTB (polypyrimidine tract-binding protein), heterogeneous nuclear ribonucleoproteins (hnRNPs), tristetraprolin, ZFP36, Zf-C3H type) ), nucleolin, iron-response element-binding proteins (IRPs), and cytoplasmic polyadenylation-element-binding proteins (CPEBs), selectively bind to numerous hypoxia-regulated transcripts and play a major role in establishing hypoxic gene expression patterns. MiRNAs including miR-210, miR-373, and miR-21 associate with hypoxia-regulated transcripts and further modulate the levels of the encoded proteins to implement the hypoxic gene expression profile. We discuss the potent regulation of hypoxic gene expression by RBPs and miRNAs and their integrated actions in the cellular hypoxic response."
(Otan sitaatin myös kappaleesta jossa tämä ZFP36 mainitaan (TTP, tristetraproliini, RNA decay activating protein)
The overexpression of each of the three family members can suppress the expression of a HIF1α3′UTR reporter construct through the control of mRNA stability [92].
TTP family members bind to AU-rich elements within the UTRsof a variety of genes and endogenous TTP physically interacts with HIF1αmRNA as measured byRNA IP [92]. In the case of the HIF1α transcript, TTP can bind to a well-defined region in the 3′UTRof HIF1α and induce its degradation [91,92]. siRNA knock down experiments show that TTP can specifically destabilise HIF1α mRNA in cells exposed to prolonged hypoxia, but not normoxic cells,perhaps indicating that TTP plays a role in a hypoxia-specific HIF1 negative feedback loop [91,92].The m RNAs targeted by TTP encode protein products such as HIF1α, which are critical for the progression of several malignancies [95–98]. The loss of TTP has been reported in several human cancers; this correlates with the elevation of HIF1α and poor prognosis [95–98].6.5. RNA Binding Motif Protein 38RNA Binding Motif Protein 38 (RBM38) is an ad
TTP, tristetraproliini on DNA:n degradaatiota aktivoiva proteiini ja säätelee täten myös HIF1alfaa hypoksiasta riippuvalla tavalla.
Mielenkiintoinen ryhmä. 38 geeniä. Eräs lähde sanoo: 35 geeni ja niistä 2 transkriptiotekijää. Linkistä sa nimet, synoyymit ja geenin sijainnin kromosomissa.
Näistä mainittiin ZFP36 seuraavassa yhteydessä:
Review ARTICLE:
Front. Mol. Neurosci., 01 July 2011
| https://doi.org/10.3389/fnmol.2011.00007
Post-transcriptional control of the hypoxic response by RNA-binding proteins and microRNAs
Myriam Gorospe1*, Kumiko Tominaga1, Xue Wu2, Michael Fähling3* and Mircea Ivan2
ZFP36 (19q13.2) ; TTP , tristetraproliiniMuita nimiä: RNF162A, EGF response factor 1, NUP475,TIS11, Zfp-36, GOS24, RNA decay activator protein.
( Kun Nobelin palkinto tnä vuonna tuli hypoxian ja normoxian homeostaasia käsittelevästä asiasta, huomasin että usea sinkkiproteiinikin on tässä säätelyssä mukana.
Myös tästä sikkisormirakenteen C3H- omaavasta ryhmästä mainitaan tekijää).
Abstraktista sitaatti:
"Mammalian gene expression patterns change profoundly in response to low oxygen levels (HYPOXIA). These changes in gene expression programs are strongly influenced by post-transcriptional mechanisms mediated by mRNA-binding factors: RNA-binding proteins (RBPs) and microRNAs (miRNAs).
Here, we review the RBPs and miRNAs that modulate mRNA turnover and translation in response to hypoxic challenge.
RBPs such as HuR (human antigen R), PTB (polypyrimidine tract-binding protein), heterogeneous nuclear ribonucleoproteins (hnRNPs), tristetraprolin, ZFP36, Zf-C3H type) ), nucleolin, iron-response element-binding proteins (IRPs), and cytoplasmic polyadenylation-element-binding proteins (CPEBs), selectively bind to numerous hypoxia-regulated transcripts and play a major role in establishing hypoxic gene expression patterns. MiRNAs including miR-210, miR-373, and miR-21 associate with hypoxia-regulated transcripts and further modulate the levels of the encoded proteins to implement the hypoxic gene expression profile. We discuss the potent regulation of hypoxic gene expression by RBPs and miRNAs and their integrated actions in the cellular hypoxic response."
(Otan sitaatin myös kappaleesta jossa tämä ZFP36 mainitaan (TTP, tristetraproliini, RNA decay activating protein)
- MicroRNAs and several RBPs such as TTP can modulate mRNA stability in response to hypoxia.
- The tristetraprolin (TTP) family consists of three proteins with characteristic tandem zinc-finger domains, includingTTP (also known as zinc-finger protein 36, ZFP36),ZFP36L1 or TIS11B (tetradecanoylphorbol acetate-inducible sequence 11B),and ZFP36L2 or TIS11D.TTP is inducible by different stimuli, including hypoxia, is predominantly cytoplasmic, and promotes the decay of target mRNAs in a variety of systems (Carballo et al., 1998; Kim et al., 2010).TTP was found to interact with the HIF-1α 3′UTR and promoted the degradation of HIF-1α mRNA (Kim et al., 2010).The generally reduced levels of TTP in many cancers was further proposed to contribute to the increased HIF-1α levels seen in many cancers (Brennan et al., 2009; Kim et al., 2010).In macrophages, the joint presence of hypoxia and lipopolysaccharide (LPS) led to decreased tumor necrosis factor (TNF)-α mRNA stability and TNF-α production, as well as to the reduced half-life and steady-state levels of mRNAs encoding other proinflammatory cytokines [macrophage inflammatory protein 2 (MIP2), interleukin (IL)-6, and granulocyte macrophage colony-stimulating factor (GM-CSF)]. This reduction was due, at least in part, to the decreased activity of p38, a kinase that phosphorylates and thereby inactivates TTP in hypoxic, LPS-treated cells (Werno et al., 2010).Hypoxia also increased the levels of MKP-3 [the mitogen-activated protein (MAP) kinase phosphatase-3], a dual-specificity phosphatase for MAP kinases ERK1/2.As TTP associated with the MKP-3 3′UTR and lowered the stability of an MKP-3 3′UTR reporter transcript, MKP-3 upregulation was attributed to the reduced decay-promoting influence of TTP upon MKP-3 mRNA during hypoxia (Bermudez et al., 2011).The TTP-related protein TIS11B, RNF162B was found to interact with the 3′UTR of the VEGF mRNA and lowered VEGF mRNA stability (Ciais et al., 2004).Very recently, the levels of TIS11B were shown to be controlled by pVHL. In normoxic renal cell carcinoma (RCC) cells ectopically expressing pVHL, increased abundance of the microRNA hsa-miR-29b was responsible for decreasing TIS11B mRNA stability and TIS11B protein levels (Sinha et al., 2009). Hypoxia also increased TIS11B expression in pVHL-expressing RCC cells, although the specific mechanisms were not identified.
The overexpression of each of the three family members can suppress the expression of a HIF1α3′UTR reporter construct through the control of mRNA stability [92].
TTP family members bind to AU-rich elements within the UTRsof a variety of genes and endogenous TTP physically interacts with HIF1αmRNA as measured byRNA IP [92]. In the case of the HIF1α transcript, TTP can bind to a well-defined region in the 3′UTRof HIF1α and induce its degradation [91,92]. siRNA knock down experiments show that TTP can specifically destabilise HIF1α mRNA in cells exposed to prolonged hypoxia, but not normoxic cells,perhaps indicating that TTP plays a role in a hypoxia-specific HIF1 negative feedback loop [91,92].The m RNAs targeted by TTP encode protein products such as HIF1α, which are critical for the progression of several malignancies [95–98]. The loss of TTP has been reported in several human cancers; this correlates with the elevation of HIF1α and poor prognosis [95–98].6.5. RNA Binding Motif Protein 38RNA Binding Motif Protein 38 (RBM38) is an ad
TTP, tristetraproliini on DNA:n degradaatiota aktivoiva proteiini ja säätelee täten myös HIF1alfaa hypoksiasta riippuvalla tavalla.
ZFAND, AN1 tyyppiset sinkkisormiproteiinit
Zinc fingers AN1-type
(ZFAND)
AN1 zinc finger In molecular biology, the AN1-type zinc finger domain, which has a dimetal (zinc)-bound alpha/beta fold. This domain was first identified as a zinc finger at the C terminus of AN1, a ubiquitin-like protein in Xenopus laevis. The AN1-type zinc finger contains six conserved cysteines and two histidines that could potentially coordinate 2 zinc atoms. [Source: Wikipedia]
AN1 zinc finger In molecular biology, the AN1-type zinc finger domain, which has a dimetal (zinc)-bound alpha/beta fold. This domain was first identified as a zinc finger at the C terminus of AN1, a ubiquitin-like protein in Xenopus laevis. The AN1-type zinc finger contains six conserved cysteines and two histidines that could potentially coordinate 2 zinc atoms. [Source: Wikipedia]
Genes contained within the group: 8
HGNC ID (gene)
|
Approved symbol
|
Approved name
|
Previous symbols
|
Synonyms
|
Chromosome
|
---|---|---|---|---|---|
HGNC:25858 | ZFAND1 |
zinc finger AN1-type containing 1
|
FLJ14007
|
8q21.13 | |
HGNC:28073 | ZFAND2A |
zinc finger AN1-type containing 2A
|
AIRAP
|
7p22.3 | |
HGNC:25206 | ZFAND2B |
zinc finger AN1-type containing 2B
|
AIRAPL
|
2q35 | |
HGNC:18019 | ZFAND3 |
zinc finger AN1-type containing 3
|
TEX27
|
FLJ13222
|
6p21.2 |
HGNC:23504 | ZFAND4 |
zinc finger AN1-type containing 4
|
ANUBL1
|
FLJ40185
|
10q11.22 |
HGNC:13008 | ZFAND5 |
zinc finger AN1-type containing 5
|
ZNF216,ZA20D2
|
ZFAND5A
|
9q21.13 |
HGNC:30164 | ZFAND6 |
zinc finger AN1-type containing 6
|
ZA20D3
|
ZFAND5B,AWP1
|
15q25.1 |
HGNC:5542 | IGHMBP2 |
immunoglobulin mu DNA binding protein 2
|
ZFAND7,SMUBP2,CATF1,SMARD1,HCSA,HMN6,CMT2S
|
11q13.3 |
Etiketter:
AN1 -Zf,
koordinoi 2 sinkkiatomia,
ZFAND
ZFHX sinkkisormi ja homeobox-proteiineista luettelo , Esimerkkinä ZEB1
..
ZF class homeoboxes and pseudogenes
HGNC ID (gene)
|
Approved symbol
|
Approved name
|
Previous symbols
|
Synonyms
|
Chromosome
|
---|---|---|---|---|---|
HGNC:15766 | ADNP |
activity dependent neuroprotector homeobox
|
KIAA0784,ADNP1
|
20q13.13 | |
HGNC:23803 | ADNP2 |
ADNP homeobox 2
|
ZNF508
|
KIAA0863
|
18q23 |
HGNC:20164 | HOMEZ |
homeobox and leucine zipper encoding
|
KIAA1443
|
14q11.2 | |
HGNC:10669 | TSHZ1 |
teashirt zinc finger homeobox 1
|
SDCCAG33
|
NY-CO-33,TSH1
|
18q22.3 |
HGNC:13010 | TSHZ2 |
teashirt zinc finger homeobox 2
|
C20orf17,ZNF218
|
ZABC2,OVC10-2,TSH2
|
20q13.2 |
HGNC:30700 | TSHZ3 |
teashirt zinc finger homeobox 3
|
ZNF537
|
KIAA1474,TSH3
|
19q12 |
HGNC:11642 | ZEB1 |
zinc finger E-box binding homeobox 1
|
TCF8,PPCD3
|
BZP,ZEB,AREB6,NIL-2-A,Zfhep,Zfhx1a,FECD6
|
10p11.22 |
HGNC:14881 | ZEB2 |
zinc finger E-box binding homeobox 2
|
ZFHX1B
|
KIAA0569,SIP-1,SIP1
|
2q22.3 |
HGNC:33346 | ZEB2P1 |
zinc finger E-box binding homeobox 2 pseudogene 1
|
ZEB1P1
|
4p15.32 | |
HGNC:20152 | ZFHX2 |
zinc finger homeobox 2
|
ZNF409
|
KIAA1762,KIAA1056,ZFH-5
|
14q11.2 |
HGNC:777 | ZFHX3 |
zinc finger homeobox 3
|
ATBF1,C16orf47
|
ZNF927,FLJ26184
|
16q22.2-q22.3 |
HGNC:30939 | ZFHX4 |
zinc finger homeobox 4
|
ZFH4,FLJ20980
|
8q21.13 | |
HGNC:12871 | ZHX1 |
zinc fingers and homeoboxes 1
|
8q24.13 | ||
HGNC:18513 | ZHX2 |
zinc fingers and homeoboxes 2
|
KIAA0854
|
8q24.13 | |
HGNC:15935 | ZHX3 |
zinc fingers and homeoboxes 3
|
TIX1
|
KIAA0395
|
20q12 |
Etiketter:
ZEB1(10p11.22),
ZFHX sinkkisormi homeobox proteiinit,
ZFHX1a
Prenumerera på:
Inlägg (Atom)